Skip to main content
Log in

Effect of surface modification on thermal expansion of Zr2WP2O12/aromatic polyimides based composites

  • Original Paper
  • Published:
Tungsten Aims and scope Submit manuscript

Abstract

Surface modification is a fascinating way to improve the compounding effect between inorganic fillers and polymers. In this study, zirconium tungsten phosphate (ZWP) with negative thermal expansion was surface modified by silane coupling agent 3-(Trimethoxysilyl)propyl methacrylate. The effects of surface modification and the modification mechanism were analyzed in detail by X-ray diffractometer, scanning electron microscopy, Fourier transform infrared spectroscopy and thermal mechanical analysis. The surface modification could effectively reduce the thermal expansion properties of the composite. When the added amount of 3-methacryloxypropyl trimethoxysilaneSilane (trade name: KH570) is 0.50 wt%, the thermal expansion coefficient of ZWP/Aromatic polyimide composite decreased by 9.76%. The surface modification also can effectively improve the dielectric performance of aromatic polyimides. The present work provides one new way to improve the thermal expansion behavior of composites.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Numata S, Oohara S, Imaizumi J, Kinjo N. Thermal expansion behavior of various aromatic polyimides. Polym J. 1985;17(8):981.

    Article  CAS  Google Scholar 

  2. Hasegawa M, Tsujimura Y, Koseki K, Miyazaki T. Poly(ester Imide)s possessing low CTE and low waterabsorption (ii). Eff Substit Polym J. 2008;40(1):56.

    CAS  Google Scholar 

  3. Hasegawa M, Horiuchi M, Kumakura K. Colorless polyimides with low coefficient of thermal expansion derived from alkyl-substituted cyclobutanetetracarboxylic dianhydrides. Polym Int. 2014;63(3):486.

    Article  CAS  Google Scholar 

  4. Matsuura T, Yamada N, Nishi S, Hasuda Y. Polyimides derived from 2,2’-bis(trifluoromethyl)-4,4’-diaminobiphenyl. 3. Property control for polymer blends and copolymerization of fluorinated polyimides. Macromolecules. 1993;26(3):419.

    Article  CAS  Google Scholar 

  5. Hasegawa M, Sakamoto Y, Tanaka Y, Kobayashi Y. Poly(ester Imide)s possessing low coefficients of thermal expansion(cte) and low water absorption (iii). Use ofbis(4-aminophenyl)terephthalate and effect of substituents. Eur Polym J. 2010;46(7):1510.

    Article  CAS  Google Scholar 

  6. Fukukawa K, Okazaki M, Sakata Y, Urakami T, Yamashita W, Tamai S. Synthesis and properties of multi-block semi-alicyclic polyimides forthermally stable transparent and low CTE film. Polymer. 2013;54(3):1053.

    Article  CAS  Google Scholar 

  7. Tang JC, Lin GL, Yang HC, Jiang GJ. Polyimide-silica nanocomposites exhibiting lowthermal expansion coefficient and water absorptionfrom surface-modified Silica. J Appl Polym Sci. 2007;104(6):4096.

    Article  CAS  Google Scholar 

  8. Zha JW, Dang ZM, Zhou T, Song HT, Chen G. Electrical properties of TiO2-filled polyimide nanocomposite films prepared viaan in situ polymerization process. Synthetic Met. 2010;160(24):2670.

    Article  CAS  Google Scholar 

  9. Liang ZM, Yin J, Xu HJ. Polyimide/montmorillonite nanocomposites based on thermally stable, rigid-rod aromatic amine modifiers. Polym. 2003;44(5):1391.

    Article  CAS  Google Scholar 

  10. Pramoda KP, Mya KY, Lin TT, Lu XH, He CB. Investigation of thermomechanical properties and matrix–filler interaction on polyimide/graphene oxidecomposites. Polym Eng Sci. 2012;52(12):2530.

    Article  CAS  Google Scholar 

  11. Wei W, Gao QL, Guo J, Chao MJ, He LH, Chen J, Liang EJ. Realizing isotropic negative thermal expansion covering room temperature by breaking the superstructure of ZrV2O7. Appl Phys Lett. 2020;116(18):181902.

    Article  CAS  Google Scholar 

  12. Sanson A. EXAFS spectroscopy: a powerful tool for the study of local vibrational dynamics. Microstructures. 2021;1:2021004.

    Google Scholar 

  13. Gao QL, Wang JQ, Sanson A, Sun Q, Liang EJ, Xing XR, Chen J. Discovering large isotropic negative thermal expansion in framework compound AgB(CN)4 via the concept of average atomic volume. J Am Chem Soc. 2020;142:6935.

    Article  CAS  Google Scholar 

  14. Gao QL, Liang EJ, Xing XR, Chen J. Negative thermal expansion in Prussian blue analogue. J Chin Univ. 2020;41:388.

    CAS  Google Scholar 

  15. Pan Z, Jiang XX, Nishikubo K, Sakai Y, Ishizaki H, Oka K, Lin ZH, Azuma M. Pronounced negative thermal expansion in lead-free BiCoO3-based ferroelectrics triggered by the stabilized perovskite structure. Chem Mater. 2019;31:6187.

    Article  CAS  Google Scholar 

  16. Song YZ, Shi NK, Deng SQ, Xing XR, Chen J. Negative thermal expansion in magnetic materials. Prog Mater Sci. 2021;124:100835.

    Article  Google Scholar 

  17. Shi XW, Lian H, Yan XS, Qi RQ, Yao N, Li T. Fabrication and properties of polyimide composites filled with zirconium tungsten phosphate of negative thermal expansion. Mater Chem Phys. 2016;179(1):72.

    Article  CAS  Google Scholar 

  18. Kim SK, Wang XY, Ando S. Highly transparent triethoxysilane-terminated copolyimide and its SiO2 composite with enhanced thermal stability and reduced thermal expansion. Eur Polym J. 2015;64(3):206.

    Article  CAS  Google Scholar 

  19. Morikawa A, Lyoku Y, Kakimoto M, Imai Y. Preparation of silica-containing polyvinylpyrrolidone films by sol-gel process. Polym J. 1992;24(7):689.

    Article  CAS  Google Scholar 

  20. Lee Y, Huang J, Kuo S, et al. Polyimide and polyhedral oligomeric silsesquioxane nanocomposites for low-dielectric applications. Polymer. 2005;46(1):173.

    Article  CAS  Google Scholar 

  21. Rodríguez-Carvajal J. Recent advances in magnetic structure determination by neutron powder diffraction. Physica B. 1993;192:55.

    Article  Google Scholar 

  22. Yang WK, Liu FF, Zhang JD, Zhang ES, Qiu XH, Ji XL. Influence of thermal treatment on the structure and mechanical properties of one aromatic BPDA-PDA polyimide fiber. Eur Polym J. 2017;96:429.

    Article  CAS  Google Scholar 

  23. Kotera M, Samyul B, Araie K, Sugioka Y, Nishino T, Maji S, Noda M, Senoo K, Koganezawa T, Hirosawa I. Microstructures of BPDA-PPD polyimide thin films with different thicknesses. Polym. 2013;54:2435.

    Article  CAS  Google Scholar 

  24. Shi XW, Zhou Q, Yan XS, Li XR, Zhu BL. Preparation and properties of Zr2WP2O12 with negative thermal expansion without sintering additives. Process Appl Ceram. 2020;14(2):173.

    Article  CAS  Google Scholar 

  25. Shang ZP, Lu CL, Lu XD, Gao LX. Synthesis and properties of silica-polyimide hybrid films derived from colloidal silica particles and polyamic acid. J Appl Polym Sci. 2008;109:3477.

    Article  CAS  Google Scholar 

  26. Qin JQ, Li Z, Gu Y. Study on morphology control and how to affect mechanical properties of polyimide/silica hybrid films. J Appl Polym Sci. 2010;118:2772.

    Article  CAS  Google Scholar 

  27. Lind C, Coleman MR, Kozy LC, Sharma GR. Zirconium tungstate/polymer nanocomposites: challenges and opportunities. Phys Status Solidi B. 2011;248:123.

    Article  CAS  Google Scholar 

  28. Zhang QQ, Gao F, Zhang CC, Wang L, Wang M, Qin MJ, Hu GX, Kong J. Enhanced dielectric tunability of Ba0.6S0.4rTiO3/poly (vinylidene fluoride) composites via interface modification by silane coupling agent. J Compos Sci Ctehno. 2016;129:93.

    CAS  Google Scholar 

  29. Xing XY, Liu T, Pei JZ, Huang JY, Li R, Zhang JP, Tian YF. Effect of fiber length and surface treatment on the performance of fiber-modified binder. Constr Build Mater. 2020;248:118702.

    Article  CAS  Google Scholar 

  30. Liu WD, Zhu BK, Zhang J, Xu YY. Preparation and dielectric properties of polyimide/silica nanocomposite films prepared from sol-gel and blending process. Polym Adv Tchhnol. 2007;18:522.

    Article  CAS  Google Scholar 

  31. Yang N, Xu C, Hou J, Yao YM, Zhang QX, Grami ME, He LQ, Wang NY, Qu XW. Preparation a properties of thermally conductive polyimide/boron nitride composites. Rsc Adv. 2016;6:18279.

    Article  CAS  Google Scholar 

  32. Pan C, Kou KC, Jia Q, Zhang Y, Wu GL, Ji TZ. Improved thermal conductively and dielectric properties of hBN/ PTFE composites via surface treatment by silane coupling agent. Compos B. 2017;111:83.

    Article  CAS  Google Scholar 

  33. Matinlinna JP, Özcan M, Lassila LVJ, Vallittu PK. The effect of a 3-Methacryloxypropyl trimethoxysilane and vinyltriisopropoxysilane blend and tris(3-Trimethoxysilylpropyl) isocyanurate on the shearbond strength of composite resin to titanium metal. Dent Mater. 2004;20:804.

    Article  CAS  Google Scholar 

  34. Hossain MZ, Yuan YH, Teja AS. Measurement of enthalpies of association between CO2 and polymers via in situ ATR-FTIR spectroscopy. J Supercrit Fluid. 2014;95:457.

    Article  CAS  Google Scholar 

  35. Sharma GR, Lind C, Coleman MR. Preparation and properties of polyimide nano-composites with negative thermal expansion nanoparticle filler. Mater Chem Phys. 2012;137:448.

    Article  CAS  Google Scholar 

  36. Li G, He YH, Zhu PL, Zhao T, Sun R, Lu D, Wong CP. Tailored surface chemistry of SiO2 particles with improved rheological, thermal-mechanical and adhesive properties of epoxy based composites for underfill applications. Polym. 2018;156:111.

    Article  CAS  Google Scholar 

  37. Shi XW, Lian H, Qi RQ, Cui LB, Yao N. Preparation and properties of negative thermal expansion Zr2P2WO12 powder and Zr2P2WO12 /TiNi composites. Mater Sci Eng B. 2016;203:1.

    Article  CAS  Google Scholar 

  38. Zhu BL, Zheng H, Wang J, Ma J, Wu J, Wu R. Tailoring of thermal and dielectric properties of LDPE-matrix composites by the volume fraction, density, and surface modification of hollow glass microsphere filler. Compos B. 2014;58:91.

    Article  CAS  Google Scholar 

  39. Huang XY, Zhi CY, Jiang PK, Golberg D, Bando Y, Tanaka T. Polyhedral oligosilsesquioxane-modified boron nitride nanotube based epoxy nanocomposites: an ideal dielectric material with high thermal conductivity. Adv Funct Mater. 2013;23:1824.

    Article  CAS  Google Scholar 

  40. Zhu BL, Wang J, Zheng H, Ma J, Wu J, Wu R. Investigation of thermal conductivity and dielectric properties of LDPE-matrix composites filled with hybrid filler of hollow glass microspheres and nitride particles. Compos B. 2015;68:496.

    Article  Google Scholar 

  41. Yuan C, Jin KK, Li K, Diao S, Tong JW, Fang Q. Non-porous low-k dielectric films based on a new structural amorphous fluoropolymer. Adv Mater. 2013;25:4875.

    Article  CAS  Google Scholar 

  42. Volksen V, Miller RD, Dubois G. Low dielectric constant materials. Chem Rev. 2010;110:56.

    Article  CAS  Google Scholar 

  43. Song NN, Yao HY, Ma TN, Wang TJ, Shi KX, Tian Y, Zhang B, Zhu SY, Zhang YH, Guan SW. Decreasing the dielectric constant and water uptake by introducing hydrophobic cross-linked networks into co-polyimide films. Appl Surf Sci. 2019;480:990.

    Article  CAS  Google Scholar 

  44. Li XT, Liu T, Jiao YZ, Dong J, Gan F, Zhao X, Zhang QH. Novel high-performance poly (benzoxazole-co-imide) resins with low dielectric constants and superior thermal stabilities derived from thermal rearrangement of ortho-hydroxy polyimide oligomers. Chem Eng J. 2019;359:641.

    Article  CAS  Google Scholar 

  45. Huang XW, Wang J, Li QM, Lin J, Wang ZD. Impact of the phenyl thioether contents on the high frequency dielectric loss characteristics of the modified polyimide films. Surf Coat Tech. 2019;360:205.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the national science foundation of china (Nos. 22071221, 21905252) and the natural science foundation of Henan province (Nos. 182300410192, 212300410086).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Xin-Wei Shi or Qi-Long Gao.

Ethics declarations

Conflict of interest

The authors declare no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shi, XW., Zhang, S., Zhou, Q. et al. Effect of surface modification on thermal expansion of Zr2WP2O12/aromatic polyimides based composites. Tungsten 5, 179–188 (2023). https://doi.org/10.1007/s42864-022-00147-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s42864-022-00147-4

Keywords

Navigation