Skip to main content
Log in

Measurement of the electronic structure of a type-II topological Dirac semimetal candidate VAl3 using angle-resolved photoelectron spectroscopy

  • Original Paper
  • Published:
Tungsten Aims and scope Submit manuscript

A Correction to this article was published on 14 August 2023

This article has been updated

Abstract

Type-II topological Dirac semimetals are topological quantum materials hosting Lorentz-symmetry breaking type-II Dirac fermions, which are tilted Dirac cones with various exotic physical properties, such as anisotropic chiral anomalies and novel quantum oscillations. Until now, only limited material systems have been confirmed by theory and experiments with the type-II Dirac fermions. Here, we investigated the electronic structure of a new type-II Dirac semimetal VAl3 with angle-resolved photoelectron spectroscopy. The measured band dispersions are consistent with the theoretical prediction, which suggests the Dirac points are located close to (at about 100 meV above) the Fermi level. Our work demonstrates a new type-II Dirac semimetal candidate system with different Dirac node configurations and application potentials.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

d and e Reproduced with permission from Ref. [46] Copyright 2017 American Physical Society. f VAl3 core-level spectrum, obtained with hν = 200 eV

Fig. 2

Reproduced with permission from Ref. [47] Copyright 2018 American Physical Society

Fig. 3
Fig. 4

Similar content being viewed by others

Change history

References

  1. Zhang H, Liu CX, Qi XL, Dai X, Fang Z, Zhang SC. Topological insulators in Bi2Se3 and Sb2Te3 with a single Dirac cone on the surface. Nat Phys. 2009;5(6):438.

    Article  CAS  Google Scholar 

  2. Qi XL, Zhang SC. Topological insulators and superconductors. Rev Mod Phys. 2011;83(4):1057.

    Article  CAS  Google Scholar 

  3. Chen YL, Analytis JG, Chu JH, Liu ZK, Mo SK, Qi XL, Zhang HJ, Lu DH, Dai X, Fang Z, Zhang SC, Fisher IR, Hussain Z, Shen ZX. Experimental realization of a three-dimensional topological insulators, Bi2Te3. Science. 2009;325(5937):178.

    Article  CAS  Google Scholar 

  4. Fu L, Kane CL. Topological insulators with inversion symmetry. Phys Rev B. 2007;76(4):045302.

    Article  Google Scholar 

  5. Moore JE, Balent L. Topological invariants of time-reversal-invariant band structures. Phys Rev B. 2007;75(12):121306.

    Article  Google Scholar 

  6. Hsieh D, Qian D, Wray L, Xia Y, Hor YS, Cava RJ, Hasan MZ. A topological Dirac insulator in a quantum spin Hall phase. Nature. 2008;452(970):06843.

    Google Scholar 

  7. Liu ZK, Zhou B, Zhang Y, Wang ZJ, Weng HM, Prabhakaran D, Mo SK, Shen ZX, Fang Z, Dai X, Hussain Z, Chen YL. Discovery of a three-dimensional topological Dirac semimetal, Na3Bi. Science. 2014;343(6173):864.

    Article  CAS  Google Scholar 

  8. Wang Z, Weng H, Wu Q, Dai X, Fang Z. Three-dimensional Dirac semimetal and quantum transport in Cd3As2. Phys Rev B. 2013;88(12):125427.

    Article  Google Scholar 

  9. Jeon S, Zhou BB, Gyenis A, Feldman BE, Kimchi I, Potter AC, Gibson QD, Cava RJ, Vishwanath A, Yazdani A. Landau quantization and quasiparticle interference in the three-dimensional Dirac semimetal Cd3As2. Nat Mater. 2014;13(9):851.

    Article  CAS  Google Scholar 

  10. Neupane M, Xu SY, Sankar R, Alidoust N, Bian G, Liu C, Belopolski I, Chang TR, Jeng HT, Lin H, Bansil A, Chou FH, Hasan MZ. Observation of a three-dimensional topological Dirac semimetal phase in high-mobility Cd3As2. Nat Commun. 2014;5(1):3786.

    Article  CAS  Google Scholar 

  11. Weng H, Fang C, Fang Z, Bernevig BA, Dai X. Weyl Semimetal Phase in non-centrosymmetric transition-metal monophosphides. Phys Rev X. 2015;5(1):011029.

    Google Scholar 

  12. Lv BQ, Weng HM, Fu BB, Wang XP, Miao H, Ma J, Richard P, Huang XC, Zhao LX, Chen GF, Fang Z, Dai X, Qian T, Ding H. Experimental discovery of Weyl Semimetal TaAs3. Phys Rev X. 2015;5(3):031013.

    Google Scholar 

  13. Xu SY, Belopolski I, Sanchez DS, Zhang Z, Chang G, Guo C, Bian G, Yuan Z, Lu H, Chang TR, Shibayev PP, Prokopovych ML, Alidoust N, Zheng H, Lee CC, Huang SM, Sankar R, Chou F, Hsu CH, Jeng HT, Bansil A, Neupert T, Strocov VN, Lin H, Jia S, Hasan MZ. Experimental discovery of Weyl Semimetal TaP. Sci Adv. 2015;1(10):1501092.

    Article  Google Scholar 

  14. Yang LX, Liu ZK, Sun Y, Peng H, Yang HF, Zhang T, Zhou B, Zhang Y, Guo YF, Rahn M, Prabhakaran D, Hussain Z, Mo ZK, Felser Z, Yan B, Chen YL. Weyl semimetal phase in the non-centrosymmetric compound TaAs. Nat Phys. 2015;11(9):728.

    Article  CAS  Google Scholar 

  15. Xu SY, Alidoust N, Belopolski I, Yuan Z, Bian G, Chang TR, Zheng H, Strocov VN, Sanchez DS, Chang G, Zhang C, Mou D, Wu Y, Huang L, Lee CC, Huang SM, Wang BK, Bansil A, Jeng HT, Neupert T, Kaminski A, Lin H, Jia S, Hasan MZ. Discovery of a Weyl fermion state with fermi arcs in niobium arsenide. Nat Phys. 2015;11(9):748.

    Article  CAS  Google Scholar 

  16. Laha A, Mardanya S, Singh B, Lin H, Bansil A, Agarwal A, Hossain Z. Magnetotransport properties of the topological nodal-line semimetal CaCdSn. Phys Rev B. 2020;102(3):035164.

    Article  CAS  Google Scholar 

  17. Fang C, Chen Y, Kee HK, Fu L. Topological nodal line semimetals with and without spin-orbital coupling. Phys Rev B. 2015;92(8):081201.

    Article  Google Scholar 

  18. Zhou Y, Xiong F, Wan X, An J. Hopf-link topological nodal-loop semimetals. Phys Rev B. 2018;97(15):155140.

    Article  CAS  Google Scholar 

  19. Soluyanov AA, Gresch D, Wang Z, Wu QS, Troyer M, Dai X, Bernevig BA. Type-II Weyl semimetals. Nature. 2015;527(7579):495.

    CAS  Google Scholar 

  20. Xu Y, Zhang F, Zhang C. Structured Weyl points in spin-orbit coupled fermionic superfluids. Phys Rev Lett. 2015;115(26):265304.

    Article  Google Scholar 

  21. Udagawa M, Bergholtz EJ. Field-Selective anomaly and chiral mode reversal in Type-II Weyl materials. Phys Rev Lett. 2016;117(8):086401.

    Article  CAS  Google Scholar 

  22. Lv YY, Li X, Zhang BB, Deng WY, Yao SH, Chen YB, Zhou J, Zhang ST, Lu MH, Zhang L, Tian ML, Sheng L, Chen YF. Experimental observation of anisotropic adler-bell-jackiw anomaly in type-II weyl semimetal WTe1.98 crystals at the quasiclassical regime. Phys Rev Lett. 2017;118(9):096603.

    Article  Google Scholar 

  23. Ali MN, Xiong J, Flynn S, Tao J, Gibson QD, Schoop LM, Liang T, Haldolaarachchige T, Hirschberger M, Ong NP, Cava RT. Large, non-saturating magnetoresistance in WTe2. Nature. 2014;514(7521):205.

    Article  CAS  Google Scholar 

  24. O’Brien TE, Diez M, Beenakker CWJ. Magnetic breakdown and Klein tunneling in a Type-II Weyl semimetal. Phys Rev Lett. 2016;16(23):236401.

    Article  Google Scholar 

  25. Jiang J, Liu ZK, Sun Y, Yang HF, Rajamathi CR, Qi YP, Yang LX, Chen C, Peng H, Hwang CC, Sun SZ, Mo SK, Vobornik I, Fujii J, Parkin SSP, Felser C, Yan BH, Chen YL. Signature of type-II Weyl semimetal phase in MoTe2. Nat Commun. 2017;8(1):13973.

    Article  CAS  Google Scholar 

  26. Deng K, Wan GL, Deng P, Zhang KN, Ding SJ, Wang RY, Yan MZ, Huang H, Zhang H, Xu Z, Denlinger J, Fedorov A, Yang H, Duan W, Yao H, Wu Y, Fan S, Zhang H, Chen X, Zhou S. Experimental observation of topological Fermi arcs in type-II Weyl semimetal MoTe2. Nat Phys. 2016;12(12):1105.

    Article  CAS  Google Scholar 

  27. Tamai A, Wu QS, Cucchi I, Bruno FY, Riccò S, Kim TY, Hoesch M, Barreteau C, Giannini E, Besnard C, Soluyanov AA, Baumberger F. Fermi Arcs and their topological character in the candidate Type-II Weyl semimetal MoTe2. Phys Rev X. 2016;6(3):031021.

    Google Scholar 

  28. Bruno FY, Tamai A, Wu QS, Cucchi I, Barreteau C, de la Torre A, McKeown Walker S, Riccò S, Wang Z, Kim TK, Hoesch M, Shi M, Plumb NC, Giannini E, Soluyanov AA, Baumberger F. Observation of large topologically trivial Fermi arcs in the candidate type-II Weyl semimetal WTe2. Phys Rev B. 2016;94(12):121112(R).

    Article  Google Scholar 

  29. Wang CL, Zhang Y, Huang JW, Nie S, Liu GD, Liang AJ, Zhang YX, Shen B, Liu J, Hu C, Ding Y, Liu DF, Hu Y, He SL, Zhao L, Yu L, Hu J, Wei J, Mao ZQ, Shi YG, Jia XW, Zhang FF, Zhang SJ, Yang F, Wang ZM, Peng QJ, Weng HM, Dai X, Fang Z, Xu ZY, Chen CT, Zhou XJ. Observation of Fermi arc and its connection with bulk states in the candidate type-II Weyl semimetal WTe2. Phys Rev B. 2016;94(24):241119(R).

    Article  Google Scholar 

  30. Wu Y, Jo NH, Mou D, Huang L, Bud’ko SL, Canfield PC, Kaminski A. Observation of Fermi arcs in the type-II Weyl semimetal WTe2. Phys Rev B. 2016;94(12):121113.

    Article  Google Scholar 

  31. Autes G, Gresch D, Troyer M, Soluyanov AA, Yazyev OV. Robust Type-II Weyl semimetal phase in transition metal diphosphides XP2 (X=Mo, W). Phys Rev Lett. 2016;117(6):066402.

    Article  CAS  Google Scholar 

  32. Kumar N, Sun Y, Xu N, Manna K, Yao M, Suss V, Leermakers I, Young O, Forster T, Schmidt M, Borrmann MH, Yan B, Zeitler U, Shi M, Felser C, Shekhar C. Extremely high magnetoresistance and conductivity in the type-II Weyl semimetals WP2 and MoP2. Nat Commun. 2017;8(1):1642.

    Article  Google Scholar 

  33. Yao MY, Xu N, Wu QS, Autès G, Kumar N, Strocov VN, Plumb NC, Radovic M, Yazyev OV, Felser C, Mesot J, Shi M. Observation of Weyl nodes in Robust Type-II Weyl semimetal WP2. Phys Rev Lett. 2019;122(17):176402.

    Article  CAS  Google Scholar 

  34. Xu SY, Lidoust N, Chang GQ, Lu H, Singh B, Belopolski I, Sanchez D, Zhang X, Bian G, Zheng H, Husanu MA, Bian Y, Huang SM, Hsu CH, Chang TR, Jeng HT, Bansil A, Strocov VN, Lin H, Jia S, Hasan MZ, Neupert T. Discovery of Lorentz-violating type II Weyl fermions in LaAlGe. Sci Adv. 2017;3(6):1603266.

    Article  Google Scholar 

  35. Chang G, Xu SY, Sanchez DS, Huang SM, Lee CC, Chang TR, Bian G, Zheng H, Belopolski I, Alidoust N, Jeng HT, Bansil A, Lin H, Hasan MZ. A strong robust type II Weyl fermion semimetal state in Ta3S2. Sci Adv. 2016;2(6):1600295.

    Article  Google Scholar 

  36. Koepernik K, Kasinathan D, Efremov DV, Khim S, Borisenko S, Bchner B, Brink JVD. TaIrTe4: A ternary type-II Weyl semimetal. Phys Rev B. 2016;93(20):201101.

    Article  Google Scholar 

  37. Borisenko S, Evtushinsky D, Gibson Q, Yaresko A, Koepernik K, Kim T, Ali M, van den Brink J, Hoesch M, Fedorov A, Haubold E, Kushnirenko Y, Soldatov I, Schafer R, Cava RJ. Time-reversal symmetry breaking type-II Weyl state in YbMnBi2. Nat Commun. 2019;10(1):3424.

    Article  Google Scholar 

  38. Xu CQ, Li B, Jiao WH, Zhou W, Qian B, Sankar R, Zhigadlo ND, Qi YP, Qian D, Chou FC, Xu XF. Topological type-II Dirac fermions approaching the fermi level in a transition metal dichalcogeenide NiTe2. Chem Mater. 2018;30(14):4823.

    Article  CAS  Google Scholar 

  39. Huang H, Zhou S, Duan W. Type-II Dirac fermions in the PtSe2 class of transition metal dichalcogenides. Phys Rev B. 2016;94(12):121117(R).

    Article  Google Scholar 

  40. Zhang K, Yan M, Zhang H, Huang H, Arita M, Sun Z, Duan W, Wu Y, Zhou S. Experimental evidence for type-II Weyl semimetal in PtSe2. Phys Rev B. 2017;96(12):125102.

    Article  Google Scholar 

  41. Li Y, Xia Y, Ekahana SA, Kumar N, Jiang J, Yang L, Chen C, Liu C, Yan B, Felser C, Li G, Liu Z, Chen Y. Topological origin of the type-II Dirac fermions in PtSe2. Phys Rev Mater. 2017;1(7):074202.

    Article  Google Scholar 

  42. Yan M, Huang H, Zhang K, Wang E, Yao W, Deng K, Wan G, Zhang H, Arita M, Yang H. Lorentz-violating type-II Dirac fermions in transition metal dichalcogenide PtTe2. Nat Commun. 2017;8(1):257.

    Article  Google Scholar 

  43. Noh HJ, Jeong J, Cho EJ, Kim K, Min BI, Park BG. Experimental realization of type-II Dirac fermions in a PtTe2 superconductor. Phys Rev Lett. 2017;119(1):016401.

    Article  Google Scholar 

  44. Fei F, Bo X, Wang R, Wu B, Jiang J, Fu D, Gao M, Zheng H, Chen Y, Wang X, Bu H, Song F, Wan X, Wang B, Wang G. Nontrivial berry phase and type-II Dirac transport in the layered material. Phys Rev B. 2017;96(4):041201(R).

    Article  Google Scholar 

  45. Deng T, Chen C, Su H, He JY, Liang AJ, Cui ST, Yang HF, Wang CW, Huang K, Jozwiak C, Bostwick A, Rotenberg E, Lu DH, Hashimoto M, Yang LX, Liu ZK, Guo YF, Xu G, Liu Z, Chen YL. Electronic structure of the Si-containing topological Dirac semimetal CaAl2Si2. Phys Rev B. 2020;102(4):045106.

    Article  CAS  Google Scholar 

  46. Chang TR, Xu SY, Sanchez SD, Tsai WF, Huang SF, Chang G, Hsu CH, Bian G, Belopolski I, Yu ZM, Yang SA, Neupert T, Jeng HJ, Lin H, Hasan MZ. Type-II symmetry-protected topological Dirac semimetal. Phys Rev Lett. 2017;119(2):026404.

    Article  Google Scholar 

  47. Chen KW, Lian X, Lai Y, Aryal N, Chiu YC, Lan W, Graf D, Manousakis E, Baumbach RE, Balicas L. Bulk fermi surfaces of the Dirac Type-II Semimetallic candidates MAl3 (where M=V, Nb, and Ta). Phys Rev Lett. 2018;120(20):206401.

    Article  CAS  Google Scholar 

  48. Creveling J Jr, Luo HL. Temperature-dependence in the susceptibility of Al3V. Phys Lett A. 1969;28(11):772.

    Article  CAS  Google Scholar 

  49. Krajcí M, Hafner J. Covalent bonding and bandgap formation in transition-metal aluminides: di-aluminides of group VIII transition metals. Phys Condens Matter. 2002;14(23):1865.

    Article  Google Scholar 

  50. Kumagai M, Kurosaki K, Ohishi YJ, Muta H, Yamanaka S. Reduction of lattice thermal conductivity of pseudogap intermetallic compound Al3V. Phys Status Solidi B. 2016;253(3):469.

    Article  CAS  Google Scholar 

  51. Singha R, Roy S, Pariari A, Satpati B, Mandal P. Planar hall effect in the type-II Dirac semimetal VAl3. Phys Rev B. 2018;98(8):081103(R).

    Article  Google Scholar 

  52. Canfield PC, Fisk Z. Growth of single crystals from metallic fluxes. Philos Mag. 1992;65(6):1117.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This research used resources of the Diamond Light Source, and other two Angle-resolved photoemission spectroscopy beamlines: Advanced Light Source, a United States Department of Energy Office of Science User Facility under Contract No. DE-AC02-05CH11231 and ‘Dreamline’ beamline of the Shanghai Synchrotron Radiation Facility. This work was sponsored by the National Key R&D Program of China (Grant No. 2017YFA0305400), the National Natural Science Foundation of China (Grant No. 11674229), Shanghai Municipal Science and Technology Major Project (Grant No. 2018SHZDZX02).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Sheng-Tao Cui, Zhong-Kai Liu or Yu-Lin Chen.

Ethics declarations

Conflict of interest

The authors state that there is no conflict of interest to disclose.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

The original online version of this article was revised: In this article Sheng-Tao Cui and Yu-Lin Chen should also have been denoted as one of the corresponding authors. This article has three corresponding authors: Zhong-Kai Liu, Sheng-Tao Cui, and Yu-Lin Chen.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Fang, HW., Liang, AJ., Schröter, N.B.M. et al. Measurement of the electronic structure of a type-II topological Dirac semimetal candidate VAl3 using angle-resolved photoelectron spectroscopy. Tungsten 5, 332–338 (2023). https://doi.org/10.1007/s42864-022-00141-w

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s42864-022-00141-w

Keywords

Navigation