Skip to main content
Log in

Microstructural evolution in W-1%TiC alloy irradiated He ions at high temperatures

  • Original Paper
  • Published:
Tungsten Aims and scope Submit manuscript

A Correction to this article was published on 21 August 2021

This article has been updated

Abstract

To investigate the surface damage of a material by He ions, a dispersion-strengthened W-1wt%TiC alloy was irradiated by 5-keV He ions at 773 K, 973 K, and 1173 K up to an ion dose of 1.8 × 1021 He m−2, respectively. No He bubble formation was observed under transmission electron microscopy at any temperature for He doses less than 1.5 × 1020 He m−2. When this dose was exceeded, He bubbles grew and void swelling increased with increasing irradiation doses. Naturally, the growth of He bubbles and the void swelling became more pronounced with increasing irradiation temperatures. Compared to the published data on commercially available pure W, the formation of He bubbles was suppressed by TiC particles in the W–TiC alloy, especially at low doses.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Change history

References

  1. Wang S, Zhang J, Luo L, Zan X, Xu Q, Zhu X, Tokunaga K, Wu Y. Properties of Lu2O3 doped tungsten and thermal shock performance. Powder Technol. 2016;301:65.

    Article  CAS  Google Scholar 

  2. Tan X, Li P, Luo L, Xu Q, Tokunaga K, Zan X, Wu Y. Effect of second-phase particles on the properties of W-based materials under high-heat loading. Nucl Mater Energy. 2016;9:399.

    Article  Google Scholar 

  3. Lin J, Luo L, Xu Q, Zan X, Zhu X, Wu Y. Microstructure and deuterium retention after ion irradiation of W-Lu2O3 composites. J Nucl Mater. 2017;490:272.

    Article  CAS  Google Scholar 

  4. Lin J, Hao Y, Luo L, Zhao M, Xu Q, X. Zan X, Zhu X, Wu Y. Microstructure and performances of W-TiC-Y2O3 composites prepared by mechano-chemical and wet-chemical Methods. J. Alloy Com. 2018; 732: 871.

  5. Yao G, Tan X, Luo L, Zan X, Liu J, Xu Q, Zhu X, Wu Y. Repair behavior of He+-irradiated W-Y2O3 composites after different temperature-isochronal annealing experiments. Nucl Instr Methods Phys Res B. 2018;415:2.

    Article  Google Scholar 

  6. Chen H, Luo L, Zan X, Xu Q, Tokunaga K, Liu Liu D, Zhu X, Cheng J, Wu Y. Transient thermal shock behavior of W–Zr/Sc2O3 composites prepared via spark plasma sintering. Fusion Eng Des. 2018;126:44.

    Article  CAS  Google Scholar 

  7. Chen H, Luo L, Zan X, Xu Q, Tokunaga K, Liu J, Zhu X, Cheng J, Wu Y. Thermal shock behavior of W–ZrC/Sc2O3 composites under two different transient events by electron and laser irradiation. J Nucl Mater. 2018;499:248.

    Article  CAS  Google Scholar 

  8. Shi J, Luo LM, Wang S, Pan WQ, Xu Q, Zan X, Zhu XY, Cheng JG, Wu YC. Preparation of TiC-doped W–Ti alloy and heat flux performance test under laser beam facility. Fusion Eng Des. 2018;126:79.

    Article  CAS  Google Scholar 

  9. Lin J, Luo L, Huang K, Zan X, Xu Q, Liu J, Zhu X, Cheng J, Wu Y. Preparation and properties of fine-grained and ultrafine-grained W–TiC–Y2O3 composite. Fusion Eng Des. 2018;126:147.

    Article  CAS  Google Scholar 

  10. Chen H, Luo L, Zan X, Xu Q, Zhu X, Liu J, Cheng J, Wu Y. Microstructure and helium irradiation performance of W–ZrC/Sc2O3 composites prepared spark plasma sintering. Int J Refract Met Hard Mater. 2018;72:373.

    Article  CAS  Google Scholar 

  11. Liu D, Zheng L, Luo L, Zan X, Song J, Xu Q, Zhu X, Wu Y. An overview of oxidation-resistant tungsten alloys for nuclear fusion. J Alloy Compd. 2018;765:299.

    Article  CAS  Google Scholar 

  12. Xu M, Luo L, Lin J, Xu Y, Zan X, Xu Q, Tokunaga K, Zhu X, Wu Y. Microstructure and transient laser thermal shock behavior of W–T–C–Y2O3 composites prepared by wet chemical method. J Alloys Compd. 2018;766:784.

    Article  CAS  Google Scholar 

  13. Xu M, Luo L, Xu Y, Zan X, Xu Q, Tokunaga K, Zhu X, Wu Y. Effect of laser beam thermal shock on the helium ion irradiation damage behavior of W–TiC–Y2O3 composites. J Nucl Mater. 2018;509:198.

    Article  CAS  Google Scholar 

  14. Yao G, Tan X, Fu M, Luo L, Zan X, Xu Q, Liu J, Zhu X, Cheng J, Wu Y. Isotropic thermal conductivity in rolled large-sized W–Y2O3 bulk material prepared by powder metallurgy route and rolling deformation technology. Fusion Eng Des. 2018;137:325.

    Article  CAS  Google Scholar 

  15. Zhou Y, Zhao Z, Tan X, Luo L, Xu Y, Zan X, Xu Q, Tokunaga K, Zhu X, Wu Y. Densification and microstructure evolution of W–TiC–Y2O3 during spark plasma sintering. Int J Refract Met Hard Mater. 2019;79:95.

    Article  CAS  Google Scholar 

  16. Yao G, Tan X, Luo L, Hong K, Zan X, Xu Q, Zhu X, Lian Y, Liu X, Wu Y. Surface damage evolution during transient thermal shock of W-2%Vol Y2O3 composite material in different surfaces. Fusion Eng Des. 2019;139:86.

    Article  CAS  Google Scholar 

  17. Wu Y, Hou Q, Luo L, Zan X, Zhu X, Li P, Xu Q, Cheng J, Luo G, Chen J. Preparation of ultrafine-grained/nanostructured tungsten materials: an overview. J Alloy Compd. 2019;779:926.

    Article  CAS  Google Scholar 

  18. Chen Y, Wu Y, Yu F, Chen J. Microstructure and mechanical properties of tungsten composites co-strengthened by dispersed TiC and La2O3 particles. Int J Refract Met Hard Mater. 2008;26:525.

    Article  CAS  Google Scholar 

  19. Talekar V, Patra A, Sahoo S, Karak S, Mishra B. Fabrication and characterization of nano-Y2O3, Al2O3, La2O3 dispersed mechanically alloyed and liquid phase sintered W–Ni for structural application. Int J Refract Met Hard Mater. 2019;82:183.

    Article  CAS  Google Scholar 

  20. Li J, Fang F, Wang Z, Zhang G, Wei S, Xu L, Pan K. Microstructure and properties characterization of W-25Cu composite materials liquid–liquid doped with La2O3. Int J Refract Met Hard Mater. 2018;71:115.

    Article  CAS  Google Scholar 

  21. Kurishita H, Matsuo S, Arakawa H, Sakamoto T, Kobayashi S, Nakai K, Takida T, Kato M, Kawai M, Yoshida N. Developments of re-crystallized W-1.1%TiC with enhanced room-temperature ductility and radiation performance. J Nucl Mater. 2010;398(1–3):87.

    Article  CAS  Google Scholar 

  22. Kurishita H, Kobayashi S, Nakai K, Ogawa T, Hasegawa A, Abe K, Arakawa H, Matsuo S, Takida T, Takebe K, Kawai M. Yoshida development of ultra-fine grained W-(0.25–0.8)wt%TiC and its superior resistance to neutron and 3 MeV He-ion irradiations. N J Nucl Mater. 2008;377(1):34.

    Article  CAS  Google Scholar 

  23. Kurishita H, Amano Y, Kobayashi S, Nakai K, Arakawa H, Hiraoka Y, Takida T, Takebe K, Matsui H. Development of ultra-fine grained W–TiC and their mechanical properties for fusion applications. J Nucl Mater. 2007;367-370(B):1453.

    Article  CAS  Google Scholar 

  24. Xu Q, Ding X, Luo L, Miyamoto M, Tokitani M, Zhang J, Wu Y. Thermal stability and evolution of microstructures induced by He irradiation in W–TiC alloys. Nucl Mater Energy. 2018;15:76.

    Article  Google Scholar 

  25. Xu Q, Ding X, Luo L, Miyamoto M, Tokitani M, Zhang J, Wu Y. D2 retention and microstructural evolution during He irradiation in candidate plasma facing material W–La2O3 alloy. J Nucl Mater. 2017;496:227.

    Article  CAS  Google Scholar 

  26. Ding X, Luo L, Chen H, Luo G, Zhu X, Zan X, Cheng J, Wu Y. Fabrication on W-1wt% TiC composites by spark plasma sintering. Fusion Eng Des. 2015;92:29.

    Article  CAS  Google Scholar 

  27. Luo L, Tan X, Chen H, Luo G, Zhu X, Cheng J, Wu Y. Preparation and characteristics of W-1wt% TiC alloy via a novel chemical method and spark plasma sintering. Powder Technol. 2015;273:8.

    Article  CAS  Google Scholar 

  28. Ziegler J. SRIM-2008. Available at http://www.srim.org/SRIM/SRIM2011.htm. Accessed 12 June 2012.

  29. Xu Q, Yoshiie T, Huang H. Molecular dynamics simulation of vacancy diffusion in tungsten induced by irradiation. Nucl Instrum Method B. 2003;206:123.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was partially conducted and supported by the auspices of the NIFS Collaboration Research Program (Grant No. NIFS17KLPF055).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Q. Xu.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Xu, Q., Chen, H.Y., Luo, L.M. et al. Microstructural evolution in W-1%TiC alloy irradiated He ions at high temperatures. Tungsten 1, 229–235 (2019). https://doi.org/10.1007/s42864-019-00026-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s42864-019-00026-5

Keywords

Navigation