Skip to main content

Advertisement

Log in

Current overview of the valorization of bio-wastes for adsorbed natural gas applications

  • Review
  • Published:
Carbon Letters Aims and scope Submit manuscript

Abstract

The use of NG in the transportation sector is becoming an appealing option to diesel and gasoline fuels, presenting higher benefits. ANG technology offers a secure, cost-effective, energy-efficient strategy for the storage of NG in porous sorbents at reasonable gas densities. The major goal for its extensive utilization is the requirement of effective storage materials under practicable conditions. Recently, there has been increased attention in utilizing bio-wastes for the preparation of microporous carbons. In this contribution, our growing knowledge on the use of biobased materials and the processing strategies in an effort to predictively produce effective porous carbons appropriate for ANG technology have been reviewed. By careful literature selection, different precursors with different alternative processes to convert low-cost bio-wastes into porous carbons and achievements in methane storage are presented. To gain deeper insight into the technology, the correlation between the structural and chemical properties of materials and the factors affecting the storage performance are highlighted. The utilization of bio-wastes for the development of microporous carbons with facile methods emerged to be encouraging, which would be significant in larger scale applications. Bio-waste processing for ANG storage is valued over many other techniques, and the products are able to store substantial levels of methane. This review could help improve researchers’ evaluation of the methods as a guideline for ANG. Further studies for achieving an accomplished interconnection between the structural characteristics and the methane storage capacities with different bio-wastes and optimization strategies would be beneficial.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Copyright Altwala A, Mokaya R [Royal Society of Chemistry]. Distributed under a Creative Commons Attribution 3.0 Unported Licence)

Fig. 5

Copyright Altwala A, Mokaya R [Royal Society of Chemistry]. Distributed under a Creative Commons Attribution 3.0 Unported Licence)

Fig. 6

Similar content being viewed by others

Data availability

Not applicable.

References

  1. Attia NF, Jung M, Park J, Cho SY, Oh H (2020) Facile synthesis of hybrid porous composites and its porous carbon for enhanced H2 and CH4 storage. Int J Hydrog Energy 45(57):32797–32807. https://doi.org/10.1016/j.ijhydene.2020.03.004

    Article  CAS  Google Scholar 

  2. Middleton RS, Eccles JK (2013) The complex future of CO2 capture and storage: variable electricity generation and fossil fuel power. Appl Energy 108:66–73. https://doi.org/10.1016/j.apenergy.2013.02.065

    Article  CAS  Google Scholar 

  3. Yi H, Li F, Ning P, Tang X, Peng J, Li Y, Deng H (2013) Adsorption separation of CO2, CH4, and N2 on microwave activated carbon. Chem Eng J 215–216:635–642. https://doi.org/10.1016/j.cej.2012.11.050

    Article  CAS  Google Scholar 

  4. Altwala A, Mokaya R (2020) Predictable and targeted activation of biomass to carbons with high surface area density and enhanced methane storage capacity. Energy Environ Sci 13:2967–2978. https://doi.org/10.1039/D0EE01340D

    Article  CAS  Google Scholar 

  5. Wang J, Huang L, Yang R, Zhang Z, Wu J, Gao Y, Wang Q, O’Hare D, Zhong Z (2014) Recent advances in solid sorbents for CO2 capture and new development trends. Energy Environ Sci 7:3478–3518. https://doi.org/10.1039/c4ee01647e

    Article  CAS  Google Scholar 

  6. Li Y, Li D, Rao Y, Zhao X, Wu M (2016) Superior CO2, CH4, and H2 uptakes over ultrahigh-surface-area carbon spheres prepared from sustainable biomass-derived char by CO2 activation. Carbon 105:454–462. https://doi.org/10.1016/j.carbon.2016.04.036

    Article  CAS  Google Scholar 

  7. Zhang F, Ma H, Chen J, Li GD, Zhang Y, Chen JS (2008) Preparation and gas storage of high surface area microporous carbon derived from biomass source cornstalks. Bioresour Technol 99:4803–4808. https://doi.org/10.1016/j.biortech.2007.09.052

    Article  CAS  Google Scholar 

  8. Policicchio A, Maccallini E, Agostino RG, Ciuchi F, Aloise A, Giordano G (2013) Higher methane storage at low pressure and room temperature in new easily scalable large-scale production activated carbon for static and vehicular applications. Fuel 104:813–821. https://doi.org/10.1016/j.fuel.2012.07.035

    Article  CAS  Google Scholar 

  9. Eberle U, Müller B, von Helmolt R (2012) Fuel cell electric vehicles and hydrogen infrastructure: status 2012. Energy Environ Sci 5:8780–8798. https://doi.org/10.1039/C2EE22596D

    Article  Google Scholar 

  10. Prauchner MJ, Sapag K, Rodríguez-Reinoso F (2016) Tailoring biomass-based activated carbon for CH4 storage by combining chemical activation with H3PO4 or ZnCl2 and physical activation with CO2. Carbon 110:138–147. https://doi.org/10.1016/j.carbon.2016.08.092

    Article  CAS  Google Scholar 

  11. Feroldi M, Neves AC, Borba CE, Alves HJ (2018) Methane storage in activated carbon at low pressure under different temperatures and flow rates of charge. J Clean Prod 172:921–926. https://doi.org/10.1016/j.jclepro.2017.10.247

    Article  CAS  Google Scholar 

  12. Wang X, French J, Kandadai S, Chua HT (2010) Adsorption measurements of methane on activated carbon in the temperature range (281–343) K and pressure to 1.2 MPa. J Chem Eng Data 55:2700–2706. https://doi.org/10.1021/je900959w

    Article  CAS  Google Scholar 

  13. Solar C, Sardella F, Deiana C, Lago RM, Vallone A, Sapag K (2008) Natural gas storage in microporous carbon obtained from waste of the olive oil production. Mater Res 11:409–414. https://doi.org/10.1590/S1516-14392008000400005

    Article  CAS  Google Scholar 

  14. Djeridi W, Mansour NB, Ouederni A, Llewellyn PL, Mir LE (2015) Influence of the raw material and nickel oxide on the CH4 capture capacity behaviors of microporous carbon. Int J Hydrog Energy 40(39):13690–13701. https://doi.org/10.1016/j.ijhydene.2015.05.010

    Article  CAS  Google Scholar 

  15. Memetova A, Tyagi I, Karri RR, Memetov SN, Zelenin A, Stolyarov R, Babkin A, Yagubov V, Burmistrov I, Tkachev A, Bogoslovskiy V, Shigabaeva G, Galunin E (2022) High-density nanoporous carbon materials as storage material for methane: a value-added solution. Chem Eng J 433:134608. https://doi.org/10.1016/j.cej.2022.134608

    Article  CAS  Google Scholar 

  16. Cavenati S, Grande CA, Rodrigues AE (2004) Adsorption equilibrium of methane, carbon dioxide, and nitrogen on zeolite 13X at high pressures. J Chem Eng Data 49:1095–1101. https://doi.org/10.1021/je0498917

    Article  CAS  Google Scholar 

  17. Blanco AG, de Olivera JCA, Lopez R, Pirajan LCM, Giraldo L, Zgrablich G, Sapag K (2010) A study of the pore size distribution for activated carbon monoliths and their relationship with the storage of methane and hydrogen. Colloids Surf A Physicochem Eng Asp 357:74–83. https://doi.org/10.1016/j.colsurfa.2010.01.006

    Article  CAS  Google Scholar 

  18. Cruz OF, Albero JS, Casco ME, Hotza D, Rambo CR (2018) Activated nanocarbons produced by microwave-assisted hydrothermal carbonization of Amazonian fruit waste for methane storage. Mater Chem Phys 216:42–46. https://doi.org/10.1016/j.matchemphys.2018.05.079

    Article  CAS  Google Scholar 

  19. Mirzaei S, Ahmadpour A, Shahsavand A, Rashidi H, Arami-Niya A (2020) Superior performance of modified pitch-based adsorbents for cyclic methane storage. J Energy Storage 28:101251. https://doi.org/10.1016/j.est.2020.101251

    Article  Google Scholar 

  20. Casco ME, Escandell MM, Kaneko K, Albero JS, Reinoso FR (2015) Very high methane uptake on activated carbons prepared from mesophase pitch: a compromise between microporosity and bulk density. Carbon 93:11–21. https://doi.org/10.1016/j.carbon.2015.05.029

    Article  CAS  Google Scholar 

  21. Choi S, Alkhabbaz MA, Wang Y, Othman RM, Choi M (2019) Unique thermal contraction of zeolite-templated carbons enabling micropore size tailoring and its effects on methane storage. Carbon 141:143–153. https://doi.org/10.1016/j.carbon.2018.09.045

    Article  CAS  Google Scholar 

  22. Zhang C, Li D, Xie Y, Stalla D, Hua P, Nguyen DT, Xin M, Lin J (2021) Machine learning assisted rediscovery of methane storage and separation in porous carbon from material literature. Fuel 290:120080. https://doi.org/10.1016/j.fuel.2020.120080

    Article  CAS  Google Scholar 

  23. Esen M, Yuksel T (2013) Experimental evaluation of using various renewable energy sources for heating a greenhouse. Energy Build 65:340–351. https://doi.org/10.1016/j.enbuild.2013.06.018

    Article  Google Scholar 

  24. Castellò DL, Monge JA, Lillo MAC, Amoròs DC, Solano AL (2002) Advances in the study of methane storage in porous carbonaceous materials. Fuel 81:1777–1803. https://doi.org/10.1016/S0016-2361(02)00124-2

    Article  Google Scholar 

  25. Mason JA, Veenstra M, Long JR (2014) Evaluating metal-organic frameworks for natural gas storage. Chem Sci 5(1):32–51. https://doi.org/10.1039/C3SC52633J

    Article  CAS  Google Scholar 

  26. Cook TL, Komodromos C, Quinn DF, Ragan S, Burchell TD (eds) (1999). Pergamon, New York, pp 269–302

    Book  Google Scholar 

  27. Nazzal JS, Kamińska W, Michalkiewicz B, Koren ZC (2013) Production, characterization and methane storage potential of KOH-activated carbon from sugarcane molasses. Ind Crops Prod 47:153–159. https://doi.org/10.1016/j.indcrop.2013.03.004

    Article  CAS  Google Scholar 

  28. Casco ME, Escandell MM, Ramos EG, Kaneko K, Albero JS, Reinoso FR (2015) High-pressure methane storage in porous materials: are carbon materials in the pole position? Chem Mat 27(3):959–964. https://doi.org/10.1021/cm5042524

    Article  CAS  Google Scholar 

  29. He Y, Zhou W, Qian G, Chen B (2014) Methane storage in metal–organic frameworks. Chem Soc Rev 43:5657–5678. https://doi.org/10.1039/C4CS00032C

    Article  CAS  Google Scholar 

  30. Menon VC, Komarneni S (1998) Porous adsorbents for vehicular natural gas storage: a review. J Porous Mater 5:43–58. https://doi.org/10.1023/A:1009673830619

    Article  CAS  Google Scholar 

  31. Castellò DL, Amoròs DC, Solano AL, Quinn DF (2002) Influence of pore size distribution on methane storage at relatively low pressure: preparation of activated carbon with optimum pore size. Carbon 40:989–1002. https://doi.org/10.1016/S0008-6223(01)00235-4

    Article  Google Scholar 

  32. Morris RE, Wheatley PS (2008) Gas storage in nanoporous materials. Angew Chem Int Ed 47:4966–4981. https://doi.org/10.1002/anie.200703934

    Article  CAS  Google Scholar 

  33. Rozyyev V, Thirion D, Ullah R, Lee J, Jung M, Oh H, Atilhan M, Yavuz CT (2019) High-capacity methane storage in flexible alkane-linked porous aromatic network polymers. Nat Energy 4:604–611. https://doi.org/10.1038/s41560-019-0427-x

    Article  CAS  Google Scholar 

  34. Reinoso FR, Albero JS (2019) Methane storage on nanoporous carbons. In: Kaneko K, Rodríguez-Reinoso F (eds) Nanoporous materials for gas storage. Green energy and technology. Springer, Singapore. https://doi.org/10.1007/978-981-13-3504-4_8

    Chapter  Google Scholar 

  35. Zhou Y, Wang Y, Chen H, Zhou L (2005) Methane storage in wet activated carbon: studies on the charging/discharging process. Carbon 43:2007–2012. https://doi.org/10.1016/j.carbon.2005.03.017

    Article  CAS  Google Scholar 

  36. Konstas K, Osl T, Yang Y, Batten M, Burke N, Hill AJ, Hilla MR (2012) Methane storage in metal organic frameworks. J Mater Chem 22:16698–16708. https://doi.org/10.1039/C2JM32719H

    Article  CAS  Google Scholar 

  37. Peng Y, Krungleviciute V, Eryazici I, Hupp JT, Farha OK, Yildirim T (2013) Methane storage in metal–organic frameworks: current records, surprise findings, and challenges. J Am Chem Soc 135(32):11887–11894. https://doi.org/10.1021/ja4045289

    Article  CAS  Google Scholar 

  38. Zhang SY, Talu O, Hayhurst DT (1991) High-pressure adsorption of methane in NaX, MgX, CaX, SrX, and BaX. J Phys Chem 95:1722–1726s. https://doi.org/10.1021/j100157a044

    Article  CAS  Google Scholar 

  39. Wood CD, Tan B, Trewin A, Su F, Rosseinsky MJ, Bradshaw D, Sun Y, Zhou L, Cooper AI (2008) Microporous organic polymers for methane storage. Adv Mater 20(10):1916–1921. https://doi.org/10.1002/adma.200702397

    Article  CAS  Google Scholar 

  40. Tong W, Lv Y, Svec F (2016) Advantage of nanoporous styrene-based monolithic structure over beads when applied for methane storage. Appl Energy 183:1520–1527. https://doi.org/10.1016/j.apenergy.2016.09.066

    Article  CAS  Google Scholar 

  41. Saini VK, Andrade M, Pinto ML, Carvalho AP, Pires J (2010) How the adsorption properties get changed when going from SBA-15 to its CMK-3 carbon replica. Sep Purif Technol 75(3):366–376. https://doi.org/10.1016/j.seppur.2010.09.006

    Article  CAS  Google Scholar 

  42. Memetova AE, Zelenin AD, Memetov NR, Babkin AV, Gerasimova AV (2022) Microporous carbon material with high volumetric capacity of methane accumulation. Inorg Mater Appl Res 13:1352–1358. https://doi.org/10.1134/S2075113322050276

    Article  Google Scholar 

  43. Zhu ZW, Zheng QR (2016) Methane adsorption on the graphene sheets, activated carbon and carbon black. Appl Therm Eng 108(2016):605–613. https://doi.org/10.1016/j.applthermaleng.2016.07.146

    Article  CAS  Google Scholar 

  44. Castello DL, Amoros DC, Solano AL, Quinn DF (2002) Activated carbon monoliths for methane storage: influence of binder. Carbon 40(15):2817–2825. https://doi.org/10.1016/S0008-6223(02)00194-X

    Article  Google Scholar 

  45. Castello DL, Amoros DC, Solano AL (2002) Powdered activated carbons and activated carbon fibers for methane storage: a comparative study. Energy Fuels 16:1321–1328. https://doi.org/10.1021/ef020084s

    Article  CAS  Google Scholar 

  46. Casco ME, Escandell MM, Albero JS, Reinoso FR (2014) Effect of the porous structure in carbon materials for CO2 capture at atmospheric and high-pressure. Carbon 67:230–235. https://doi.org/10.1016/j.carbon.2013.09.086

    Article  CAS  Google Scholar 

  47. Cavka JH, Grande CA, Mondino G, Blom R (2014) High pressure adsorption of CO2 and CH4 on Zr-MOFs. Ind Eng Chem Res 53:15500–15507. https://doi.org/10.1021/ie500421h

    Article  CAS  Google Scholar 

  48. Yoo MJ, Ko HJ, Lim YS, Kim MS (2014) Modification of isotropic coal-tar pitch by acid treatments for carbon fiber melt-spinning. Carbon Lett 15:247–254. https://doi.org/10.5714/CL.2014.15.4.247

    Article  Google Scholar 

  49. Wu YJ, Yang Y, Kong XM, Li P, Yu JG, Ribeiro AM, Rodrigues AE (2015) Adsorption of pure and binary CO2, CH4, and N2 gas components on activated carbon beads. J Chem Eng Data 60(9):2684–2693. https://doi.org/10.1021/acs.jced.5b00321

    Article  CAS  Google Scholar 

  50. Gao S, Ge L, Rufford TE, Zhu Z (2017) The preparation of activated carbon discs from tar pitch and coal powder for adsorption of CO2, CH4 and N2. Micropor Mesopor Mat 238:19–26. https://doi.org/10.1016/j.micromeso.2016.08.004

    Article  CAS  Google Scholar 

  51. Kumar KV, Preuss K, Titirici MM, Reinoso FR (2017) Nanoporous materials for the onboard storage of natural gas. Chem Rev 117(3):1796–1825. https://doi.org/10.1021/acs.chemrev.6b00505

    Article  CAS  Google Scholar 

  52. Patil KH, Sahoo S (2018) Charge characteristics of adsorbed natural gas storage system based on MAXSORB III. J Nat Gas Sci Eng 52:267–282. https://doi.org/10.1016/j.jngse.2018.01.008

    Article  CAS  Google Scholar 

  53. Toprak A, Kopac T (2019) Effect of surface area and micropore volume of activated carbons from coal by KOH, NaOH and ZnCl2 treatments on methane adsorption. Int J Chem React Eng 17(6):20180146. https://doi.org/10.1515/ijcre-2018-0146

    Article  CAS  Google Scholar 

  54. Klein N, Senkovska I, Gedrich K, Stoeck U, Henschel A, Mueller U, Kaskel S (2009) A mesoporous metal–organic framework. Angew Chem Int Ed. https://doi.org/10.1002/anie.200904599

    Article  Google Scholar 

  55. Tian T, Zeng Z, Vulpe D, Casco ME, Divitini G, Midgley PA, Albero JS, Tan JC, Moghadam PZ, Jimenez DF (2018) A sol-gel monolithic metal-organic framework with enhanced methane uptake. Nat Mater 17(2):174–179. https://doi.org/10.1038/nmat5050

    Article  CAS  Google Scholar 

  56. Lozar JPM, Juan JJ, García FS, Amoròs DC, Solano AL (2012) MOF-5 and activated carbons as adsorbents for gas storage. Int J Hydrog Energy 37:2370–2381. https://doi.org/10.1016/j.ijhydene.2011.11.023

    Article  CAS  Google Scholar 

  57. Tang R, Dai O, Liang W, Wu Y, Zhou X, Pan H, Li Z (2020) Synthesis of novel particle rice-based carbon materials and its excellent CH4/N2 adsorption selectivity for methane enrichment from Low-rank natural gas. Chem Eng J 384:123388. https://doi.org/10.1016/j.cej.2019.123388

    Article  CAS  Google Scholar 

  58. Park J, Lee G, Hwang S, Kim J, Hong B, Kim H, Hong BU, Kim H, Kim S (2018) The effects of methane storage capacity using upgraded activated carbon by KOH. Appl Sci 8:1596. https://doi.org/10.3390/app8091596

    Article  CAS  Google Scholar 

  59. Park J, Jung M, Jang H, Lee K, Attia NF, Oh H (2018) A facile synthesis tool of nanoporous carbon for promising H2, CO2, and CH4 sorption capacity and selective gas separation. J Mater Chem A 6(45):23087–23100. https://doi.org/10.1039/C8TA08603F

    Article  CAS  Google Scholar 

  60. Reinoso FR, Sabio MM (1992) Activated carbons from lignocellulosic materials by chemical and/or physical activation: an overview. Carbon 30(7):1111–1118. https://doi.org/10.1016/0008-6223(92)90143-K

    Article  Google Scholar 

  61. Reinoso FR, Sabio MM, González MT (1995) The use of steam and CO2 as activating agents in the preparation of activated carbons. Carbon 33:15–23. https://doi.org/10.1016/0008-6223(94)00100-E

    Article  Google Scholar 

  62. Ròdenas MAL, Amoròs DC, Solano AL (2003) Understanding chemical reactions between carbons and NaOH and KOH an insight into the chemical activation mechanism. Carbon 41(2):267–275. https://doi.org/10.1016/S0008-6223(02)00279-8

    Article  Google Scholar 

  63. Erdogan FO, Kopac T (2019) Adsorption behavior of alcohol vapors on Zonguldak-Karadon coal derived porous carbons. Energy Sources A. https://doi.org/10.1080/15567036.2019.1666191

    Article  CAS  Google Scholar 

  64. Erdogan FO, Kopac T (2020) Investigation of acetone adsorption characteristics of activated carbons obtained from Zonguldak-Karadon coal at room temperature. J Fac Eng Archit Gazi Univ. 34(3):2211–2224. https://doi.org/10.17341/gazimmfd.686415

    Article  Google Scholar 

  65. Chen PY, Nien PC, Wu CT, Wu TH, Lin CW, Ho KC (2009) Fabrication of a molecularly imprinted polymer sensor by self-assembling monolayer/mediator system. Anal Chim Acta 643:38–44. https://doi.org/10.1016/j.aca.2009.04.004

    Article  CAS  Google Scholar 

  66. Yuan S, White D, Mason A, Liu DJ (2013) Porous organic polymers containing carborane for hydrogen storage. Int J Energy Res 37:732–740. https://doi.org/10.1002/er.1886

    Article  CAS  Google Scholar 

  67. Kyotani T, Nagai T, Inoue S, Tomita A (1997) Formation of new type of porous carbon by carbonization in zeolite nanochannels. Chem Mater 9:609–615. https://doi.org/10.1021/cm960430h

    Article  CAS  Google Scholar 

  68. Kyotani T, Ma Z, Tomita A (2003) Template synthesis of novel porous carbons using various types of zeolites. Carbon 41:1451–1459. https://doi.org/10.1016/S0008-6223(03)00090-3

    Article  CAS  Google Scholar 

  69. Ma Z, Kyotani T, Tomita A (2000) Preparation of a high surface area microporous carbon having the structural regularity of Y zeolite. Chem Commun 23:2365–2366. https://doi.org/10.1039/B006295M

    Article  Google Scholar 

  70. Yang Z, Xia Y, Mokaya R (2007) Enhanced hydrogen storage capacity of high surface area zeolite-like carbon materials. J Am Chem Soc 129:1673–1679. https://doi.org/10.1021/ja067149g

    Article  CAS  Google Scholar 

  71. Stadie NP, Murialdo M, Ahn CC, Fultz B (2013) Anomalous isosteric enthalpy of adsorption of methane on zeolite-templated carbon. J Am Chem Soc 135:990–993. https://doi.org/10.1021/ja311415m

    Article  CAS  Google Scholar 

  72. Antoniou MK, Policicchio A, Dimos K, Gournis D, Karakassides MA, Agostino RG (2012) Naphthalene-based periodic nanoporous organosilicas: II. Hydrogen and methane adsorption and physicochemical study. Micropor Mesopor Mat 150:332–338. https://doi.org/10.1016/j.micromeso.2012.03.035

    Article  CAS  Google Scholar 

  73. Choi S, Kim H, Lee S, Wang Y, Ercan C, Othman R, Choi M (2015) Large-scale synthesis of high-quality zeolite-templated carbons without depositing external carbon layers. Chem Eng J 280:597–605. https://doi.org/10.1016/j.cej.2015.06.055

    Article  CAS  Google Scholar 

  74. Choi CH, Kim M, Kwon HC, Cho SJ, Yun S, Kim HT, Mayrhofer KJJ, Kim H, Choi M (2016) Tuning selectivity of electrochemical reactions by atomically dispersed platinum catalyst. Nat Commun 7:10922–10931. https://doi.org/10.1038/ncomms10922

    Article  CAS  Google Scholar 

  75. Kopac T, Karaaslan T (2007) H2, He and Ar sorption on arc-produced cathode deposit consisting of multiwalled carbon nanotubes-graphitic and diamond-like carbon. Int J Hydrog Energy 32:3990–3997. https://doi.org/10.1016/j.ijhydene.2007.03.032

    Article  CAS  Google Scholar 

  76. Kocabas S, Kopac T, Dogu G, Dogu T (2008) Effect of thermal treatments and palladium loading on hydrogen sorption characteristics of single-walled carbon nanotubes. Int J Hydrog Energy 33:1693–1699. https://doi.org/10.1016/j.ijhydene.2008.01.004

    Article  CAS  Google Scholar 

  77. Policicchio A, Filosa R, Abate S, Desiderio G, Colavita E (2017) Activated carbon and metal organic framework as adsorbent for low-pressure methane storage applications: an overview. J Porous Mater 24(4):905–922. https://doi.org/10.1007/s10934-016-0330-9

    Article  CAS  Google Scholar 

  78. Farzad S, Taghikhani V, Ghotbi C, Aminshahidi B, Lay EN (2007) Experimental and theoretical study of the effect of moisture on methane adsorption and desorption by activated carbon at 273.5 K. J Nat Gas Chem 16(1):22–30. https://doi.org/10.1016/S1003-9953(07)60021-8

    Article  CAS  Google Scholar 

  79. Najibi H, Chapoy A, Tohidi B (2008) Methane/natural gas storage and delivered capacity for activated carbons in dry and wet conditions. Fuel 87(1):7–13. https://doi.org/10.1016/j.fuel.2007.03.044

    Article  CAS  Google Scholar 

  80. Mestre AS, Freire C, Pires J, Carvalho AP, Pinto ML (2014) High performance microspherical activated carbons for methane storage and landfill gas or biogas upgrade. J Mater Chem 2(37):15337–15344. https://doi.org/10.1039/C4TA03242J

    Article  CAS  Google Scholar 

  81. Choi PS, Jeong JM, Choi YK, Kim MS, Shin GJ, Park SJ (2016) A review: methane capture by nanoporous carbon materials for automobiles. Carbon Lett 17(1):18–28. https://doi.org/10.5714/CL.2016.17.1.018

    Article  Google Scholar 

  82. Erdogan FO, Kopac T (2019) Highly effective activated carbons from Turkish-Kozlu bituminous coal by physical and KOH activation and sorption studies with organic vapors. Int J Chem React Eng 17(5):20180071. https://doi.org/10.1515/ijcre-2018-0071

    Article  CAS  Google Scholar 

  83. Erdogan FO, Kopac T (2020) Comparison of activated carbons produced from Zonguldak Kozlu and Zonguldak Karadon hard coals for hydrogen sorption. Energy Sources A. https://doi.org/10.1080/15567036.2020.1795310

    Article  Google Scholar 

  84. Kopac T (2021) Hydrogen storage characteristics of biobased porous carbons of different origin: a comparative review. Int J Energy Res 45(15):20497–20523. https://doi.org/10.1002/er.7130

    Article  CAS  Google Scholar 

  85. Kopac T, Sulu E, Toprak A (2016) Effect of KOH treatment on bituminous coal for the effective removal of basic blue 41 dye from aqueous solutions. Desal Water Treat 57:29007–29018. https://doi.org/10.1080/19443994.2016.1186571

    Article  CAS  Google Scholar 

  86. Kopac T, Kırca Y (2020) Effect of ammonia and boron modifications on the surface and hydrogen sorption characteristics of activated carbons from coal. Int J Hydrog Energy 45:10494–10506. https://doi.org/10.1016/j.ijhydene.2019.07.125

    Article  CAS  Google Scholar 

  87. Kopac T, Sulu E (2019) Comparison of adsorption behavior of basic red 46 textile dye on various activated carbons obtained from Zonguldak coal. J Fac Eng Archit Gazi Univ 34(3):1227–1240. https://doi.org/10.17341/gazimmfd.460518

    Article  Google Scholar 

  88. Monge JA, Lillo MADLC, Amorós DC, Solano AL (1997) Methane storage in activated carbon fibers. Carbon 35:291–297. https://doi.org/10.1016/S0008-6223(96)00156-X

    Article  Google Scholar 

  89. Li YQ, Ben T, Zhang BY, Fu Y, Qiu SL (2013) Ultrahigh gas storage both at low and high pressures in KOH-activated carbonized porous aromatic frameworks. Sci Rep 3:2420–2425. https://doi.org/10.1038/srep02420

    Article  Google Scholar 

  90. Luo J, Liu Y, Sun W, Jiang C, Xie H, Chu W (2014) Influence of structural parameters on methane adsorption over activated carbon: evaluation by using D-A model. Fuel 123:241–247. https://doi.org/10.1016/j.fuel.2014.01.053

    Article  CAS  Google Scholar 

  91. Hao SX, Wen J, Yu XP, Chu W (2013) Effect of the surface oxygen groups on methane adsorption on coals. Appl Surf Sci 264:433–442. https://doi.org/10.1016/j.apsusc.2012.10.040

    Article  CAS  Google Scholar 

  92. Feng Y, Yang W, Liu D, Chu W (2013) Surface modification of bituminous coal and its effects on methane adsorption. Chin J Chem 31:1102–1108. https://doi.org/10.1002/cjoc.201300215

    Article  CAS  Google Scholar 

  93. Delavar M, Ghoreyshi AA, Jahanshahi M, Khalili S, Nabian N (2012) The effect of chemical treatment on adsorption of natural gas by multiwalled carbon nanotubes: sorption equilibria and thermodynamic studies. Chem Ind Chem Eng Q 18:193–207. https://doi.org/10.2298/CICEQ110710061D

    Article  CAS  Google Scholar 

  94. Reinoso FR, Almansa C, Sabio MM (2005) Contribution to the evaluation of density of methane adsorbed on activated carbon. J Phys Chem B 109(43):20227–20231. https://doi.org/10.1021/jp053840e

    Article  CAS  Google Scholar 

  95. Biloé S, Goetza V, Guillot A (2002) Optimal design of an activated carbon for an adsorbed natural gas storage system. Carbon 40:1295–1308. https://doi.org/10.1016/S0008-6223(01)00287-1

    Article  Google Scholar 

  96. Celzard A, Fierro V (2005) Preparing a suitable material designed for methane storage: a comprehensive report. Energy Fuels 19:573–583. https://doi.org/10.1021/ef040045b

    Article  CAS  Google Scholar 

  97. Neto MB, Canabrava DV, Torres AEB, Castellón ER, López AJ, Azevedo DCS, Cavalcante CLJ (2007) Effects of textural and surface characteristics of microporous activated carbons on the methane adsorption capacity at high pressures. Appl Surf Sci 253:5721–5725. https://doi.org/10.1016/j.apsusc.2006.12.056

    Article  CAS  Google Scholar 

  98. Asl MN, Soltanieh M, Rashidi A, Irandoukht A (2008) Modeling and preparation of activated carbon for methane storage I. Modeling of activated carbon characteristics with neural networks and response surface method. Energy Convers Manag 49:2471–2477. https://doi.org/10.1016/j.enconman.2008.01.039

    Article  CAS  Google Scholar 

  99. Monge JA, Castelló DL, Amorós DC, Solano AL (2009) Fundamentals of methane adsorption in microporous carbons. Micropor Mesopor Mater 124:110–116. https://doi.org/10.1016/j.micromeso.2009.04.041

    Article  CAS  Google Scholar 

  100. Niya AA, Daud WMAW, Mjalli FS (2011) Comparative study of the textural characteristics of oil palm shell activated carbon produced by chemical and physical activation for methane adsorption. Chem Eng Res Des 89:657–664. https://doi.org/10.1016/j.cherd.2010.10.003

    Article  CAS  Google Scholar 

  101. Castro MCMD, Escandell MM, Reinoso FR (2010) Hydrogen adsorption on KOH activated carbons form mesophase pitch containing Si, B. Ti or Fe Carbon 48(3):636–644. https://doi.org/10.1016/j.carbon.2009.10.005

    Article  CAS  Google Scholar 

  102. Luo JJ, Liu YF, Jiang CF, Chu W, Jie W, Xie HP (2011) Experimental and modeling study of methane adsorption on activated carbon derived from anthracite. J Chem Eng Data 56:4919–4926. https://doi.org/10.1021/je200834p

    Article  CAS  Google Scholar 

  103. Shao XH, Wang WC, Zhang XJ (2007) Experimental measurements and computer simulation of methane adsorption on activated carbon fibers. Carbon 45:188–195. https://doi.org/10.1016/j.carbon.2006.07.006

    Article  CAS  Google Scholar 

  104. Rios R, Silva F, Torres A, Azevedo D, Cavalcante C (2009) Adsorption of methane in activated carbons obtained from coconut shells using H3PO4 chemical activation. Adsorption 15:271–277. https://doi.org/10.1007/s10450-009-9174-9

    Article  CAS  Google Scholar 

  105. Wilmer CE, Leaf M, Lee CY, Farha OK, Hauser BG, Hupp JT, Snurr RQ (2012) Large-scale screening of hypothetical metal-organic frameworks. Nat Chem 4:83–89. https://doi.org/10.1038/nchem.1192

    Article  CAS  Google Scholar 

  106. Almansa C, Sabio MM, Reinoso FR (2004) Adsorption of methane into ZnCl2-activated carbon derived discs. Micropor Mesopor Mater 76(1–3):185–191. https://doi.org/10.1016/j.micromeso.2004.08.010

    Article  CAS  Google Scholar 

  107. Azevedo DCS, Araújo JCS, Neto MB, Torres AEB, Jaguaribe EF, Cavalcante CL (2007) Microporous activated carbon prepared from coconut shells using chemical activation with zinc chloride. Micropor Mesopor Mater 100(1–3):361–364. https://doi.org/10.1016/j.micromeso.2006.11.024

    Article  CAS  Google Scholar 

  108. Matranga KR, Myers AL, Glandt ED (1992) Storage of natural gas by adsorption on activated carbon. Chem Eng Sci 47:1569–1579. https://doi.org/10.1016/0009-2509(92)85005-V

    Article  CAS  Google Scholar 

  109. Cracknell RF, Gordon P, Gubbins KE (1993) Influence of pore geometry on the design of microporous materials for methane storage. J Phys Chem 97:494–499. https://doi.org/10.1021/j100104a036

    Article  CAS  Google Scholar 

  110. Marín MO, González CF, García AM, Serrano VG (2006) Preparation of activated carbon from cherry stones by chemical activation with ZnCl2. Appl Surf Sci 252(17):5967–5971. https://doi.org/10.1016/j.apsusc.2005.11.008

    Article  CAS  Google Scholar 

  111. Toprak A, Kopac T (2011) Surface and hydrogen sorption characteristics of various activated carbons developed from Rat coal mine (Zonguldak) and anthracite. Chin J Chem Eng 19:931–937. https://doi.org/10.1016/S1004-9541(11)60074-8

    Article  CAS  Google Scholar 

  112. Kalderis D, Bethanis S, Paraskeva P, Diamadopoulos E (2008) Production of activated carbon from bagasse and rice husk by a single-stage chemical activation method at low retention times. Bioresour Technol 99:6809–6816. https://doi.org/10.1016/j.biortech.2008.01.041

    Article  CAS  Google Scholar 

  113. Zhang H, Chen J, Guo S (2008) Preparation of natural gas adsorbents from high-sulfur petroleum coke. Fuel 87:304–311. https://doi.org/10.1016/j.fuel.2007.05.002

    Article  CAS  Google Scholar 

  114. Niya AA, Rufford TE, Zhu Z (2016) Nitrogen-doped carbon foams synthesized from banana peel and zinc complex template for adsorption of CO2, CH4, and N2. Energy Fuels 30:7298–7309. https://doi.org/10.1021/acs.energyfuels.6b00971

    Article  CAS  Google Scholar 

  115. Rios RB, Neto MB, Amora MRJ, Torres ABE, Azevedo DCS, Cavalcante CLJ (2011) Experimental analysis of the efficiency on charge/discharge cycles in natural gas storage by adsorption. Fuel 90:113–119. https://doi.org/10.1016/j.fuel.2010.07.039

    Article  CAS  Google Scholar 

  116. Ahmadpour A, Do DD (1996) The preparation of active carbons from coal by chemical and physical activation. Carbon 34(4):471–479. https://doi.org/10.1016/0008-6223(95)00204-9

    Article  CAS  Google Scholar 

  117. Yoo HM, Lee SY, Kim BJ, Park SJ (2011) Influence of phosphoric acid treatment on hydrogen adsorption behaviors of activated carbon. Carbon Lett 12:112–115. https://doi.org/10.5714/CL.2011.12.2.112

    Article  Google Scholar 

  118. Hsu L, Teng H (2000) Influence of different chemical reagents on the preparation of activated carbons from bituminous coal. Fuel Process Technol 64(1):155–166. https://doi.org/10.1016/S0378-3820(00)00071-0

    Article  CAS  Google Scholar 

  119. Castilla CM, Marín FC, Ramón MVL, Merino MAA (2001) Chemical and physical activation of olive-mill waste water to produce activated carbons. Carbon 39(9):1415–1420. https://doi.org/10.1016/S0008-6223(00)00268-2

    Article  Google Scholar 

  120. Khalili NR, Campbell M, Sandi G, Golas J (2000) Production of micro- and mesoporous activated carbon from paper mill sludge. I. Effect of zinc chloride activation. Carbon 38(14):1905–1915. https://doi.org/10.1016/S0008-6223(00)00043-9

    Article  CAS  Google Scholar 

  121. Blankenship LS, Balahmar N, Mokaya R (2017) Oxygen-rich microporous carbons with exceptional hydrogen storage capacity. Nat Commun 8:1545. https://doi.org/10.1038/s41467-017-01633-x

    Article  CAS  Google Scholar 

  122. Balahmar N, Jumialy ASA, Mokaya R (2017) Biomass to porous carbon in one step: directly activated biomass for high performance CO2 storage. J Mater Chem A 5:12330–12339. https://doi.org/10.1039/C7TA01722G

    Article  CAS  Google Scholar 

  123. Sevilla M, Sangchoom W, Balahmar N, Fuertes AB, Mokaya R (2016) Highly porous renewable carbons for enhanced storage of energy-related gases (H2 and CO2) at high pressures. ACS Sustain Chem Eng 4:4710–4716. https://doi.org/10.1021/acssuschemeng.6b00809

    Article  CAS  Google Scholar 

  124. Blankenship TS, Mokaya R (2017) Cigarette butt-derived carbons have ultrahigh surface area and unprecedented hydrogen storage capacity. Energy Environ Sci 10:2552–2562. https://doi.org/10.1039/C7EE02616A

    Article  CAS  Google Scholar 

  125. Lee JY, Yung TY, Liu LK (2013) The microwave-assisted ionic liquid nanocomposite synthesis: platinum nanoparticles on graphene and the application on hydrogenation of styrene. Nanoscale Res Lett 8:414. https://doi.org/10.1186/1556-276X-8-414

    Article  CAS  Google Scholar 

  126. Titirici MM, Antonietti M (2010) Chemistry and materials options of sustainable carbon materials made by hydrothermal carbonization. Chem Soc Rev 39:103–116. https://doi.org/10.1039/B819318P

    Article  CAS  Google Scholar 

  127. Titirici MM, White RJ, Falco C, Sevilla M (2012) Black perspectives for a green future: hydrothermal carbons for environment protection and energy storage. Energy Environ Sci 5:6796–6822. https://doi.org/10.1039/C2EE21166A

    Article  Google Scholar 

  128. Hameed S, Sharma A, Pareek V, Wu H, Yu Y (2019) A review on biomass pyrolysis models: kinetic, network and mechanistic models. Biomass Bioenerg 12:104–122. https://doi.org/10.1016/j.biombioe.2019.02.008

    Article  CAS  Google Scholar 

  129. Lohri CR, Rajabu HM, Sweeney DJ, Zurbrügg C (2016) Char fuel production in developing countries—a review of urban biowaste carbonization. Renew Sust Energ Rev 59:1514–1530. https://doi.org/10.1016/j.rser.2016.01.088

    Article  CAS  Google Scholar 

  130. Guiotoku M, Rambo CR, Hansel FA, Magalhães WLE, Hotza D (2009) Microwave-assisted hydrothermal carbonization of lignocellulosic materials. Mater Lett 6:2707–2709. https://doi.org/10.1016/j.matlet.2009.09.049

    Article  CAS  Google Scholar 

  131. Hirst EA, Taylor A, Mokaya R (2018) A simple flash carbonization route for conversion of biomass to porous carbons with high CO2 storage capacity. J Mater Chem A 6:12393–12403. https://doi.org/10.1039/C8TA04409K

    Article  CAS  Google Scholar 

  132. Balahmar N, Mokaya R (2019) Premixed precursors for modulating the porosity of carbons for enhanced hydrogen storage: toward predicting the activation behavior of carbonaceous matter. J Mater Chem A 7:17466–17479. https://doi.org/10.1039/C9TA06308K

    Article  CAS  Google Scholar 

  133. Tsyntsarski B, Petrova B, Budinova T, Petrov N, Krzesinska M, Pusz S, Macewska J, Tzvetkov P (2010) Carbon foam derived from pitches modified with mineral acids by a low pressure foaming process. Carbon 48:3523–3530. https://doi.org/10.1016/j.carbon.2010.05.048

    Article  CAS  Google Scholar 

  134. Choi PR, Lee E, Kwon SH, Jung JC, Kim MS (2015) Characterization and organic electric-double-layer-capacitor application of KOH activated coal-tar-pitch-based carbons: effect of carbonization temperature. J Phys Chem Solids 87:72–79. https://doi.org/10.1016/j.jpcs.2015.08.007

    Article  CAS  Google Scholar 

  135. Apicella B, Tregrossi A, Stazione F, Ciajolo A, Russo C (2017) Analysis of petroleum and coal tar pitches as large pah. Chem Eng Trans 57:775–780. https://doi.org/10.3303/CET1757130

    Article  Google Scholar 

  136. Zieliński M, Wojcieszak R, Monteverdi S, Mercy M, Bettahar MM (2005) Hydrogen storage on nickel catalysts supported on amorphous activated carbon. Catal Commun 6(12):777–783. https://doi.org/10.1016/j.catcom.2005.07.001

    Article  CAS  Google Scholar 

  137. Ma ZX, Kyotani T, Liu Z, Terasaki O, Tomita A (2001) Very high surface area microporous carbon with a three-dimensional nanoarray structure: synthesis and its molecular atructure. Chem Mater 13(12):4413–4415. https://doi.org/10.1021/cm010730l

    Article  CAS  Google Scholar 

  138. Itoi H, Matsuoka C, Hirade R, Saeki G, Sugiyama S, Morishita K, Kasai Y, Iwata H, Ohzawa Y (2022) Utilization of starch and cellulose toward facile synthesis of high surface area zeolite-templated carbon. Carbon Trends 9:100228. https://doi.org/10.1016/j.cartre.2022.100228

    Article  CAS  Google Scholar 

  139. Hu Z, Srinivasan MP (1999) Preparation of high-surface-area activated carbons from coconut Shell. Micropor Mesopor Mater 27:11–18. https://doi.org/10.1016/S1387-1811(98)00183-8

    Article  Google Scholar 

  140. Cao Q, Xie KC, Lv YK, Bao WR (2006) Process effects on activated carbon with large specific surface area from corn cob. Bioresour Technol 97(1):110–115. https://doi.org/10.1016/j.biortech.2005.02.026

    Article  CAS  Google Scholar 

  141. Ioannidou O, Zabaniotou A (2007) Agricultural residues as precursors for activated carbon production—a review. Renew Sustain Energ Rev 11:1966–2005. https://doi.org/10.1016/j.rser.2006.03.013

    Article  CAS  Google Scholar 

  142. Li W, Yang K, Peng J, Zhang L, Guo S, Xia H (2008) Effects of carbonization temperatures on characteristics of porosity in coconut shell chars and activated carbons derived from carbonized coconut shell chars. Ind Crops Prod 28:190–198. https://doi.org/10.1016/j.indcrop.2008.02.012

    Article  CAS  Google Scholar 

  143. Bagheri N, Abedi J (2009) Preparation of high surface area activated carbon from corn by chemical activation using potassium hydroxide. Chem Eng Res Des 87:1059–1064. https://doi.org/10.1016/j.cherd.2009.02.001

    Article  CAS  Google Scholar 

  144. Balathanigaimani MS, Shim WG, Lee JW, Moon H (2009) Adsorption of methane on novel corn grain-based carbon monoliths. Micropor Mesopor Mater 119:47–52. https://doi.org/10.1016/j.micromeso.2008.09.034

    Article  CAS  Google Scholar 

  145. Zhong ZY, Yang Q, Li XM, Luo K, Liu Y, Zeng GM (2012) Preparation of peanut hull-based activated carbon by microwave-induced phosphoric acid activation and its application in Remazol Brilliant Blue R adsorption. Ind Crops Prod 37:178–185. https://doi.org/10.1016/j.indcrop.2011.12.015

    Article  CAS  Google Scholar 

  146. Legrouri K, Khouya E, Ezzine M, Hannache H, Denoyel R, Pallier R, Naslain R (2005) Production of activated carbon from a new precursor molasses by activation with sulphuric acid. J Haz Mater 118:259–263. https://doi.org/10.1016/j.jhazmat.2004.11.004

    Article  CAS  Google Scholar 

  147. Zabaniotou A, Stavropoulos G, Skoulou V (2008) Activated carbon from olive kernels in a two-stage process: industrial improvement. Bioresource Technol 99:320–326. https://doi.org/10.1016/j.biortech.2006.12.020

    Article  CAS  Google Scholar 

  148. Cordero HT, Aguilar LGJ, Castillo DIM, Montoya VH, Petriciolet AB, Morán MAM (2013) Synthesis and adsorption properties of activated carbons from biomass of Prunus domestica and Jacaranda mimosifolia for the removal of heavy metals and dyes from water. Ind Crops Prod 42:315–323. https://doi.org/10.1016/j.indcrop.2012.05.029

    Article  CAS  Google Scholar 

  149. Aroua MK, Daud WMAW, Chun YY, Adinata D (2008) Adsorption capacities of carbon dioxide, oxygen, nitrogen and methane on carbon molecular basket derived from polyethyleneimine impregnation on microporous palm shell activated carbon. Sep Purif Technol 62:609–613. https://doi.org/10.1016/j.seppur.2008.03.003

    Article  CAS  Google Scholar 

  150. Liu B, Wang W, Wang N (2014) Preparation of activated carbon with high surface area for high-capacity methane storage. J Energy Chem 23:662–668. https://doi.org/10.1016/S2095-4956(14)60198-4

    Article  Google Scholar 

  151. Wu Z, Wee V, Ma X, Zhao D (2021) Adsorbed natural gas storage for onboard applications. Adv Sustain Syst 5:2000200. https://doi.org/10.1002/adsu.202000200

    Article  CAS  Google Scholar 

Download references

Funding

Not applicable.

Author information

Authors and Affiliations

Authors

Contributions

Not applicable.

Corresponding author

Correspondence to Turkan Kopac.

Ethics declarations

Conflict of interest

The authors declare that they have no competing interests.

Ethical approval

Not applicable.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kopac, T. Current overview of the valorization of bio-wastes for adsorbed natural gas applications. Carbon Lett. 33, 1519–1547 (2023). https://doi.org/10.1007/s42823-023-00508-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s42823-023-00508-0

Keywords

Navigation