Skip to main content

Advertisement

Log in

The long-term effectiveness of ferromanganese biochar in soil Cd stabilization and reduction of Cd bioaccumulation in rice

  • Original Research
  • Published:
Biochar Aims and scope Submit manuscript

Abstract

The application of Fe–Mn-modified biochar for the remediation of Cd-contaminated soil over long time periods has been little studied. In this paper, we describe the performance of coconut-shell-derived biochar modified with ferromanganese in relation to soil Cd stabilization and rice Cd bioaccumulation during a 3-year laboratory study. Different application dosages (0.05–0.5 wt%) and different rice varieties (the early and late rice) are also considered. The results show that ferromanganese is mainly loaded in biochar pores as MnFe2O4, and that it decreases the specific surface area (SSA) and total pore volume of biochar. Ferromanganese biochar (0.5 wt%) applied to paddy soil is more effective than the same dose of pristine biochar in decreasing the soil-exchangeable Cd fraction (27.42–41.92% vs 22.56–33.85%), predominantly by decreasing soil Eh and increasing root Fe plaques. Ferromanganese biochar application helps to reduce Cd bioaccumulation in rice, especially in the grain (up to 48.6%–61.0%), and grain Cd levels (0.2 mg/kg) are all within the acceptable limit for food security in China. It is shown that ferromanganese modification and application can maintain soil at low redox status, keep root Fe plaques at a high level, and may also increase the stability of pristine biochar. All of these effects contribute to maintaining its high remediation efficiency over a 3-year inoculation period. The results presented in this paper demonstrate the potential applications of ferromanganese biochar in soil remediation and the improvement of food safety.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Ahmad M, Rajapaksha AU, Lim JE, Zhang M, Bolan N, Mohan D, Vithanage M, Lee SS, Ok YS (2014) Biochar as a sorbent for contaminant management in soil and water: a review. Chemosphere 99:19–33

    Article  CAS  Google Scholar 

  • Arunakumara KKIU, Walpola BC, Yoon M-H (2013) Current status of heavy metal contamination in Asia’s rice lands. Rev Environ Sci Bio 12:355–377

    Article  CAS  Google Scholar 

  • Bandara T, Franks A, Xu JM, Bolan N, Wang HL, Tang CX (2019) Chemical and biological immobilization mechanisms of potentially toxic elements in biochar-amended soils. Crit Rev Environ Sci Technol 50:903–978

    Article  CAS  Google Scholar 

  • Bian RJ, Joseph S, Cui LQ, Pan GX, Li LQ, Liu XY, Zhang AF, Rutlidge H, Wong SW, Chia C, Marjo C, Gong B, Munroe P, Donne S (2014) A three-year experiment confirms continuous immobilization of cadmium and lead in contaminated paddy field with biochar amendment. J Hazard Mater 272:121–128

    Article  CAS  Google Scholar 

  • Cao ZZ, Qin ML, Lin XY, Zhu ZW, Chen MX (2018) Sulfur supply reduces cadmium uptake and translocation in rice grains (Oryza sativa L.) by enhancing iron plaque formation, cadmium chelation and vacuolar sequestration. Environ Pollut 238:76–84

    Article  CAS  Google Scholar 

  • Cai T, Liu XL, Zhang JC, Tie BQ, Lei M, Wei X, Peng O, Du HH (2021) Silicate-modified oiltea camellia shell-derived biochar: a novel and cost-effective sorbent for cadmium removal. J Clean Prod 281:125390

    Article  CAS  Google Scholar 

  • Chang RH, Sohi SP, Jing FQ, Liu YY, Chen JW (2019) A comparative study on biochar properties and Cd adsorption behavior under effects of ageing processes of leaching, acidification and oxidation. Environ Pollut 254:113–123

    Article  CAS  Google Scholar 

  • Chen D, Wang XB, Wang XL, Feng K, Su JC, Dong JN (2020) The mechanism of cadmium sorption by sulphur-modified wheat straw biochar and its application cadmium-contaminated soil. Sci Total Environ 714:136550

    Article  CAS  Google Scholar 

  • Chen WF, Meng J, Han XR, Lan Y, Zhang WM (2019) Past, present, and future of biochar. Biochar 1:75–87

    Article  Google Scholar 

  • Cooper J, Greenberg I, Ludwig B, Hippich L, Fischer D, Glaser B, Kaiser M (2020) Effect of biochar and compost on soil properties and organic matter in aggregate size fractions under field conditions. Agric Ecosyst Environ 295:106882

    Article  CAS  Google Scholar 

  • Cui JH, Jin Q, Li YD, Li FB (2019) The oxidation and removal of As(III) from soil using a novel magnetic nanocomposite derived-biomass wastes. Environ Sci-Nano 6(2):478–488

    Article  CAS  Google Scholar 

  • Cui LQ, Pan GX, Li LQ, Bian RJ, Liu XY, Yan JL, Quan GX, Ding C, Chen TM, Liu YM, Liu Y, Yin CT, Wei CP, Yang YG, Hussain Q (2016) Continuous immobilization of cadmium and lead in biochar amended contaminated paddy soil: a five-year field experiment. Ecol Eng 93:1–8

    Article  Google Scholar 

  • Du HH, Huang QY, Lei M, Tie BQ (2018) Sorption of Pb(II) by nanosized ferrihydrite organo-mineral composites formed by adsorption versus coprecipitation. ACS Earth Space Chem 2:556–564

    Article  CAS  Google Scholar 

  • Du HH, Xu ZL, Hu M, Zhang HJ, Peacock CL, Liu X, Nie N, Xue Q, Lei M, Tie BQ (2020) Natural organic matter decreases uptake of W(VI), and reduces W(VI) to W(V), during adsorption to ferrihydrite. Chem Geol 540:119567

    Article  CAS  Google Scholar 

  • Du XL, Han Q, Li JQ, Li HY (2017) The behavior of phosphate adsorption and its reactions on the surfaces of Fe–Mn oxide adsorbent. J Tawan Inst Chem E 76:167–175

    Article  CAS  Google Scholar 

  • Duan M, Wu FP, Jia ZK, Wang SG, Cai YJ, Chang SX (2020) Wheat straw and its biochar differently affect soil properties and field-based greenhouse gas emission in a chernozemic soil. Biol Fert Soils 56:1023–1036

    Article  CAS  Google Scholar 

  • Fu YQ, Yang XJ, Ye ZH, Shen H (2016) Identification, separation and component analysis of reddish brown and non-reddish brown iron plaque on rice (Oryza sativa) root surface. Plant Soil 402:277–290

    Article  CAS  Google Scholar 

  • He LZ, Zhong H, Liu GX, Dai ZM, Brookes PC, Xu JM (2019) Remediation of heavy metal contaminated soils by biochar: Mechanisms, potential risks and applications in china. Environ Pollut 252:846–855

    Article  CAS  Google Scholar 

  • Hu M, Sun WM, Krumins V, Li FB (2019) Arsenic contamination influences microbial community structure and putative arsenic metabolism gene abundance in iron plaque on paddy rice root. Sci Total Environ 649:405–412

    Article  CAS  Google Scholar 

  • Huang GX, Ding CF, Hu ZY, Cui CH, Zhang TL, Wang XX (2018) Topdressing iron fertilizer coupled with pre-immobilization in acidic paddy fields reduced cadmium uptake by rice (Oryza sativa L.). Sci Total Environ 636:1040–1047

    Article  CAS  Google Scholar 

  • Huang T, Ding TD, Liu DH, Li JY (2020) Degradation of carbendazim in soil: effect of sewage sludge derived biochars. J Agric Food Chem 68:3703–3710

    Article  CAS  Google Scholar 

  • Inyang MI, Gao B, Yao Y, Xue YW, Zimmerman A, Mosa A, Pullammanappallil P, Ok YS, Cao XD (2015) A review of biochar as a low-cost adsorbent for aqueous heavy metal removal. Crit Rev Environ Sci Technol 46:406–433

    Article  CAS  Google Scholar 

  • Islam MS, Magid ASIA, Chen YL, Weng LP (2021) Effect of calcium and iron-enriched biochar on arsenic and cadmium accumulation from soil to rice paddy tissues. Sci Total Environ 785:147163

    Article  CAS  Google Scholar 

  • Jayarathne A, Egodawatta P, Ayoko GA, Goonetilleke A (2018) Role of residence time on the transformation of Zn, Cu, Pb and Cd attached to road dust in different land uses. Ecotoxicol Environ Saf 153:195–203

    Article  CAS  Google Scholar 

  • Karimian N, Johnston SG, Burton ED (2018) Iron and sulfur cycling in acid sulfate soil wetlands under dynamic redox conditions: a review. Chemosphere 197:803–816

    Article  CAS  Google Scholar 

  • Kashem MA, Singh BR (2006) Transformations in solid phase species of metals as affected by flooding and organic matter. Commun Soil Sci Plan Anal 35:1435–1456

    Article  CAS  Google Scholar 

  • Khan K, Wasserman GA, Liu XH, Ahmed E, Parvez F, Slavkovich V, Levy D, Mey J, van Geen A, Graziano JH, Factor-Litvak P (2012) Manganese exposure from drinking water and children’s academic achievement. Neurotoxicology 33:91–97

    Article  CAS  Google Scholar 

  • Lai C, Huang FL, Zeng GM, Huang DL, Qin L, Cheng M, Zhang C, Li BS, Yi H, Liu SY, Li L, Chen L (2019) Fabrication of novel magnetic MnFe2O4/bio-char composite and heterogeneous photo-fenton degradation of tetracycline in near neutral pH. Chemosphere 224:910–921

    Article  CAS  Google Scholar 

  • Latif A, Sheng D, Sun K, Si YB, Azeem M, Abbas A, Bilal M (2020) Remediation of heavy metals polluted environment using Fe-based nanoparticles: Mechanisms, influencing factors, and environmental implications. Environ Pollut 264:114728

    Article  CAS  Google Scholar 

  • Li FY, Cao XD, Zhao L, Wang JF, Ding ZL (2014) Effects of mineral additives on biochar formation: carbon retention, stability, and properties. Environ Sci Technol 48:11211–11217

    Article  CAS  Google Scholar 

  • Li HB, Dong XL, da Silva EB, de Oliveira LM, Chen Y, Ma LQ (2017) Mechanisms of metal sorption by biochars: biochar characteristics and modifications. Chemosphere 178:466–478

    Article  CAS  Google Scholar 

  • Li HY, Ye XX, Geng ZG, Zhou HJ, Guo XS, Zhang YX, Zhao HJ, Wang GZ (2016) The influence of biochar type on long-term stabilization for Cd and Cu in contaminated paddy soils. J Hazard Mater 304:40–48

    Article  CAS  Google Scholar 

  • Lin LN, Li ZY, Liu XW, Qiu WW, Song ZG (2019) Effects of Fe-Mn modified biochar composite treatment on the properties of as-polluted paddy soil. Environ Pollut 244:600–607

    Article  CAS  Google Scholar 

  • Lin LN, Qiu WW, Wang D, Huang Q, Song ZG, Chau HW (2017) Arsenic removal in aqueous solution by a novel Fe-Mn modified biochar composite: characterization and mechanism. Ecotoxicol Environ Saf 144:514–521

    Article  CAS  Google Scholar 

  • Liu K, Li FB, Cui JH, Yang SY, Fang LP (2020) Simultaneous removal of Cd (II) and As (III) by graphene-like biochar-supported zero-valent iron from irrigation waters under aerobic conditions: Synergistic effects and mechanisms. J Hazard Mater 395:122623

    Article  CAS  Google Scholar 

  • Liu K, Li FB, Zhao XL, Wang GY, Fang LP (2021) The overlooked role of carbonaceous supports in enhancing arsenite oxidation and removal by nZVI: Surface area versus electrochemical property. Chem Eng J 406:126851

    Article  CAS  Google Scholar 

  • Liu YL, Tie BQ, Li YXL, Lei M, Wei XD, Liu XL, Du HH (2018) Inoculation of soil with cadmium-resistant bacterium Delftia sp. B9 reduces cadmium accumulation in rice (Oryza sativa L.) grains. Ecotoxicol Environ Saf 163:223–229

    Article  CAS  Google Scholar 

  • Liu YL, Tie BQ, Peng O, Luo HY, Li DY, Liu ST, Lei M, Wei XD, Liu XL, Du HH (2020) Inoculation of Cd-contaminated paddy soil with biochar-supported microbial cell composite: a novel approach to reducing cadmium accumulation in rice grains. Chemosphere 247:125850

    Article  CAS  Google Scholar 

  • Lu J, Yang YQ, Liu PX, Li Y, Huang F, Zeng LQ, Liang YZ, Li SY, Hou B (2020) Iron-montmorillonite treated corn straw biochar: Interfacial chemical behavior and stability. Sci Total Environ 708:134773

    Article  CAS  Google Scholar 

  • O’Connor D, Peng TY, Zhang JL, Tsang DCW, Alessi DS, Shen ZT, Bolan NS, Hou DY (2018) Biochar application for the remediation of heavy metal polluted land: a review of in situ field trials. Sci Total Environ 619–620:815–826

    Article  CAS  Google Scholar 

  • Palleiro L, Patinha C, Rodríguez-Blanco ML, Taboada-Castro MM, Taboada-Castro MT (2016) Metal fractionation in topsoils and bed sediments in the mero river rural basin: bioavailability and relationship with soil and sediment properties. Catena 144:34–44

    Article  CAS  Google Scholar 

  • Park J-H, Ok YS, Kim S-H, Cho J-S, Heo J-S, Delaune RD, Seo D-C (2016) Competitive adsorption of heavy metals onto sesame straw biochar in aqueous solutions. Chemosphere 142:77–83

    Article  CAS  Google Scholar 

  • Quan GX, Fan QY, Sun JX, Cui LQ, Wang HL, Gao B, Yan JL (2020) Characteristics of organo-mineral complexes in contaminated soils with long-term biochar application. J Hazard Mater 384:121265

    Article  CAS  Google Scholar 

  • Rajapaksha AU, Chen SS, Tsang DC, Zhang M, Vithanage M, Mandal S, Gao B, Bolan NS, Ok YS (2016) Engineered/designer biochar for contaminant removal/ immobilization from soil and water: potential and implication of biochar modification. Chemosphere 148:276–291

    Article  CAS  Google Scholar 

  • Rajendran M, Shi LZ, Wu C, Li WC, An WH, Liu ZY, Xue SG (2019) Effect of sulfur and sulfur-iron modified biochar on cadmium availability and transfer in the soil-rice system. Chemosphere 222:314–322

    Article  CAS  Google Scholar 

  • Ren XH, Sun HW, Wang F, Zhang P, Zhu HK (2018) Effect of aging in field soil on biochar’s properties and its sorption capacity. Environ Pollut 242:1880–1886

    Article  CAS  Google Scholar 

  • Shen BB, Wang XM, Zhang Y, Zhang M, Wang K, Xie P, Ji HB (2020) The optimum pH and Eh for simultaneously minimizing bioavailable cadmium and arsenic contents in soils under the organic fertilizer application. Sci Total Environ 711:135229

    Article  CAS  Google Scholar 

  • Sheng YQ, Zhu LZ (2018) Biochar alters microbial community and carbon sequestration potential across different soil pH. Sci Total Environ 622–623:1391–1399

    Article  CAS  Google Scholar 

  • Tao Q, Chen YX, Zhao JW, Li B, Li YH, Tao SY, Li M, Li QQ, Xu Q, Li YD, Li HX, Li B, Chen YL, Wang CQ (2019) Enhanced cd removal from aqueous solution by biologically modified biochar derived from digestion residue of corn straw silage. Sci Total Environ 674:213–222

    Article  CAS  Google Scholar 

  • Taylor GJ, Crowder AA (1983) Use of the DCB technique for extraction of hydrous iron oxides from roots of wetland plants. Am J Bot 70:1254–1257

    Article  CAS  Google Scholar 

  • Thomas E, Borchard N, Sarmiento C, Atkinson R, Ladd B (2020) Key factors determining biochar sorption capacity for metal contaminants: a literature synthesis. Biochar 2:151–163

    Article  Google Scholar 

  • Ure AM, Quevauviller P, Muntau H, Griepink B (1993) Speciation of heavy metals in soils and sediments. An account of the improvement and harmonization of extraction techniques undertaken under the auspices of the BCR of the Commission of the European Communities. Int J Environ an Chem 51:135–151

    Article  CAS  Google Scholar 

  • Van Poucke R, Ainsworth J, Maeseele M, Ok YS, Meers E, Tack FMG (2018) Chemical stabilization of Cd-contaminated soil using biochar. Appl Geochem 88:122–130

    Article  CAS  Google Scholar 

  • Wang C, Li XC, Ma HT, Qian J, Zhai JB (2006) Distribution of extractable fractions of heavy metals in sludge during the wastewater treatment process. J Hazard Mater 137:1277–1283

    Article  CAS  Google Scholar 

  • Wang SS, Gao B, Li YC, Wan YS, Creamer AE (2015) Sorption of arsenate onto magnetic iron-manganese (Fe-Mn) biochar composites. RSC Adv 5:67971–67978

    Article  CAS  Google Scholar 

  • Wei J, Tu C, Yuan GD, Liu Y, Bi DX, Xiao L, Lu J, Theng BKG, Wang HL, Zhang LJ, Zhang XZ (2019) Assessing the effect of pyrolysis temperature on the molecular properties and copper sorption capacity of a halophyte biochar. Environ Pollut 251:56–65

    Article  CAS  Google Scholar 

  • Wu SH, He HJ, Inthapanya X, Yang CP, Lu L, Zeng GM, Han ZF (2017) Role of biochar on composting of organic wastes and remediation of contaminated soils-a review. Environ Sci Pollut Res Int 24:16560–16577

    Article  CAS  Google Scholar 

  • Xie WB, Zhao DY (2016) Controlling phosphate releasing from poultry litter using stabilized Fe-Mn binary oxide nanoparticles. Sci Total Environ 542:1020–1029

    Article  CAS  Google Scholar 

  • Xue Q, Ran Y, Tan YZ, Peacock CL, Du HH (2019) Arsenite and arsenate binding to ferrihydrite organo-mineral coprecipitate: implications for arsenic mobility and fate in natural environments. Chemosphere 224:103–110

    Article  CAS  Google Scholar 

  • Yang F, Xu ZB, Yu L, Gao B, Xu XY, Zhao L, Cao XD (2018a) Kaolinite enhances the stability of the dissolvable and undissolvable fractions of biochar via different mechanisms. Environ Sci Technol 52:8321–8329

    Article  CAS  Google Scholar 

  • Yang F, Zhao L, Gao B, Xu XY, Cao XD (2016) The interfacial behavior between biochar and soil minerals and its effect on biochar stability. Environ Sci Technol 50:2264–2271

    Article  CAS  Google Scholar 

  • Yang SH, Qu YJ, Ma J, Liu LL, Wu HW, Liu QY, Gong YW, Chen YX, Wu YH (2020) Comparison of the concentrations, sources, and distributions of heavy metal(loid)s in agricultural soils of two provinces in the yangtze river delta. China. Environ Pollut 264:114688

    Article  CAS  Google Scholar 

  • Yang Y, Sun K, Han LF, Jin J, Sun HR, Yang Y, Xing BS (2018b) Effect of minerals on the stability of biochar. Chemosphere 204:310–317

    Article  CAS  Google Scholar 

  • Yao AJ, Ju L, Ling XD, Liu C, Wei XG, Qiu H, Tang YT, Morel JL, Qiu RL, Li CL, Wang SZ (2019) Simultaneous attenuation of phytoaccumulation of Cd and As in soil treated with inorganic and organic amendments. Environ Pollut 250:464–474

    Article  CAS  Google Scholar 

  • Yin DX, Wang X, Peng B, Tan CY, Ma LQ (2017) Effect of biochar and Fe-biochar on Cd and As mobility and transfer in soil-rice system. Chemosphere 186:928–937

    Article  CAS  Google Scholar 

  • Yin GC, Song XW, Tao L, Sarkar B, Sarmah AK, Zhang WX, Lin QT, Xiao RB, Liu QJ, Wang HL (2020) Novel Fe-Mn binary oxide-biochar as an adsorbent for removing Cd(II) from aqueous solutions. Chem Eng J 389:124465

    Article  CAS  Google Scholar 

  • Yu HY, Liu CP, Zhu JS, Li FB, Deng DM, Wang Q, Liu CS (2016) Cadmium availability in rice paddy fields from a mining area: the effects of soil properties highlighting iron fractions and pH value. Environ Pollut 209:38–45

    Article  CAS  Google Scholar 

  • Zhang F, Li GH (2016) China released the action plan on prevention and control of soil pollution. Front Env Sci Eng 10:19–20

    Article  Google Scholar 

  • Zhang JY, Zhou H, Gu JF, Huang F, Yang WJ, Wang SL, Yuan TY, Liao BH (2020) Effects of nano-Fe3O4-modified biochar on iron plaque formation and Cd accumulation in rice (Oryza sativa L.). Environ Pollut 260:113970

    Article  CAS  Google Scholar 

  • Zhang LK, Liu XY, Huang XM, Wang WD, Sun P, Li YM (2019a) Adsorption of Pb2+ from aqueous solutions using Fe-Mn binary oxides-loaded biochar: Kinetics, isotherm and thermodynamic studies. Environ Technol 40:1853–1861

    Article  CAS  Google Scholar 

  • Zhang Q, Chen HF, Huang DY, Xu C, Zhu HH, Zhu QH (2019b) Water managements limit heavy metal accumulation in rice: dual effects of iron-plaque formation and microbial communities. Sci Total Environ 687:790–799

    Article  CAS  Google Scholar 

  • Zhang Q, Chen HF, Xu C, Zhu HH, Zhu QH (2019c) Heavy metal uptake in rice is regulated by pH-dependent iron plaque formation and the expression of the metal transporter genes. Environ Exp Bot 162:392–398

    Article  CAS  Google Scholar 

  • Zhao FJ, Ma YB, Zhu YG, Tang Z, McGrath SP (2015a) Soil contamination in China: current status and mitigation strategies. Environ Sci Technol 49:750–759

    Article  CAS  Google Scholar 

  • Zhao J, Liu FF, Wang ZY, Cao XS, Xing BS (2015b) Heteroaggregation of graphene oxide with minerals in aqueous phase. Environ Sci Technol 49:2849–2857

    Article  CAS  Google Scholar 

  • Zhao ZD, Zhou WJ (2019) Insight into interaction between biochar and soil minerals in changing biochar properties and adsorption capacities for sulfamethoxazole. Environ Pollut 245:208–217

    Article  CAS  Google Scholar 

  • Zhou QW, Liao BH, Lin LN, Qiu WW, Song ZG (2018a) Adsorption of Cu(II) and Cd(II) from aqueous solutions by ferromanganese binary oxide-biochar composites. Sci Total Environ 615:115–122

    Article  CAS  Google Scholar 

  • Zhou QW, Lin LN, Qiu WW, Song ZG, Liao BH (2018b) Supplementation with ferromanganese oxide–impregnated biochar composite reduces cadmium uptake by indica rice (Oryza sativa L.). J Clean Prod 184:1052–1059

    Article  CAS  Google Scholar 

  • Zhu HH, Chen C, Xu C, Zhu QH, Huang DY (2016) Effects of soil acidification and liming on the phytoavailability of cadmium in paddy soils of central subtropical china. Environ Pollut 219:99–106

    Article  CAS  Google Scholar 

  • Zhu SH, Qu T, Irshad MK, Shang JY (2020) Simultaneous removal of Cd(II) and As(III) from co-contaminated aqueous solution by alpha-FeOOH modified biochar. Biochar 2:81–92

    Article  Google Scholar 

Download references

Acknowledgements

This work was financially supported by the National Key Research and Development Program of China (2017YFD0801505), National Natural Science Foundation of China (NSFC) (No. 41907015), China Postdoctoral Science Foundation (2019M662782), and Scientific Research Fund of Hunan Provincial Education Department, China (18B120).

Author information

Authors and Affiliations

Authors

Contributions

YL: Methodology, Formal analysis, Investigation, Data Curation, Writing—Original Draft, Visualization. HL: methodology, Formal analysis, Investigation, Visualization. BT: Conceptualization, Validation, Resources, Data Curation, Supervision, Project administration, Funding acquisition. DL: Methodology, Investigation. SL: Methodology, Investigation. ML: Validation, Supervision. HD: Validation, Formal analysis, Data Curation, Writing—Review & Editing, Visualization, Supervision, Project administration, Funding acquisition.

Corresponding author

Correspondence to Boqing Tie.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, Y., Luo, H., Tie, B. et al. The long-term effectiveness of ferromanganese biochar in soil Cd stabilization and reduction of Cd bioaccumulation in rice. Biochar 3, 499–509 (2021). https://doi.org/10.1007/s42773-021-00113-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s42773-021-00113-2

Keywords

Navigation