Skip to main content
Log in

Predicting effect factors of dual bag filter system for PCDD/Fs removal from hazardous waste incineration flue gas

  • Article
  • Published:
Waste Disposal & Sustainable Energy Aims and scope Submit manuscript

Abstract

The dual  bag filter (DBF) system is a new polychlorinated dibenzo-p-dioxins and polychlorinated dibenzofurans (PCDD/Fs) emission control technology that has more efficient (PCDD/Fs) removal performance,  a higher activated carbon utilization rate and less activated carbon consumption compared with the traditional single bag filter system. Moreover, few studies have been relevant to the mechanism of the PCDD/Fs removal process in the DBF system, and the selection of operating conditions of the DBF system lacks an academic basis. This study established a PCDD/Fs removal efficiency model of activated carbon injection combined bag filter (ACI+DBF) system for hazardous waste incineration flue gas and predicted  the crucial effect factors. New adsorption coefficients k1=532,145 Nm3/(mol s) and k2=45 Nm3/(mol s), and the relationship expression between the number of available adsorption positions of recycled AC (AAC′) and cycle times (n) are proposed in the model. The results verify that the model error was below 5%. In addition, the PCDD/Fs removal efficiency model predicts that in a certain range, the PCDD/Fs removal efficiency increases with increasing activated carbon injection concentration. The best cycle number of activated carbon was less than 3, and the ratio of circulating activated carbon to fresh activated carbon in second bag filter (SBF) should be controlled at 7–8.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Data availability statement

The data that support the findings of this study are available from the corresponding author upon reasonable request.

References

  1. Wu, S., Xu, Y., and Sun, J. 2015. Inhibiting evaporation of heavy metal by controlling its chemical speciation in MSWI fly ash. Fuel 158: 764–769. https://doi.org/10.1016/j.fuel.2015.06.003.

    Article  CAS  Google Scholar 

  2. Huang, H., and Buekens, A. 1995. On the mechanisms of dioxin formation in combustion processes. Chemosphere 31 (9): 4099–4117. https://doi.org/10.1016/0045-6535(95)80011-9.

    Article  CAS  Google Scholar 

  3. Zhou, H., Meng, A., Long, Y., et al. 2015. A review of dioxin-related substances during municipal solid waste incineration. Waste Management 36: 106–118. https://doi.org/10.1016/j.wasman.2014.11.011.

    Article  CAS  Google Scholar 

  4. Lin-Chi, W., Wen-Jhy, L., Wei-Shan, L., et al. 2003. Effect of chlorine content in feeding wastes of incineration on the emission of polychlorinated dibenzo-p-dioxins/dibenzofurans. Science of The Total Environment. 302 (1): 185–198. https://doi.org/10.1016/S0048-9697(02)00306-6.

    Article  Google Scholar 

  5. Ni, Y., Zhang, H., Fan, S., et al. 2009. Emissions of PCDD/Fs from municipal solid waste incinerators in China. Chemosphere 75 (9): 1153–1158. https://doi.org/10.1016/j.chemosphere.2009.02.051.

    Article  CAS  Google Scholar 

  6. Gao, H., Ni, Y., Zhang, H., et al. 2009. Stack gas emissions of PCDD/Fs from hospital waste incinerators in China. Chemosphere 77 (5): 634–639. https://doi.org/10.1016/j.chemosphere.2009.08.017.

    Article  CAS  Google Scholar 

  7. Ministry of Ecology and Environment of the People's Republic of China. 2021. Standard for pollution control on hazardous waste incineration. GB 18484—2020. Beijing, China: Ministry of Ecology and Environment of the People's Republic of China.

    Google Scholar 

  8. Kim, B.H., Lee, S., Maken, S., et al. 2007. Removal characteristics of PCDDs/Fs from municipal solid waste incinerator by dual bag filter (DBF) system. Fuel 86 (5–6): 813–819. https://doi.org/10.1016/j.fuel.2006.09.007.

    Article  CAS  Google Scholar 

  9. Lin, W.Y., Wang, L.C., Wang, Y.F., et al. 2008. Removal characteristics of PCDD/Fs by the dual bag filter system of a fly ash treatment plant. Journal of Hazardous Materials 153 (3): 1015–1022. https://doi.org/10.1016/j.jhazmat.2007.09.054.

    Article  CAS  Google Scholar 

  10. Chi, K.H., Chang, S.H., and Chang, M.B. 2008. Reduction of dioxin-like compound emissions from a Waelz plant with adsorbent injection and a dual baghouse filter system. Environmental Science & Technology 42 (6): 2111–2117. https://doi.org/10.1021/es702396y.

    Article  CAS  Google Scholar 

  11. Chang, Y.M., Hung, C.Y., Chen, J.H., et al. 2009. Minimum feeding rate of activated carbon to control dioxin emissions from a large-scale municipal solid waste incinerator. Journal of Hazardous Materials 161 (2–3): 1436–1443. https://doi.org/10.1016/j.jhazmat.2008.04.128.

    Article  CAS  Google Scholar 

  12. Chen, M.W., Lin, T.C., Wang, L.C., et al. 2014. The PCDD/F removal efficiency of a medical waste incinerator dual-bag filter system. Aerosol and Air Quality Research 14 (4): 1223–1231. https://doi.org/10.4209/aaqr.2013.05.0164.

    Article  CAS  Google Scholar 

  13. Lin, X.Q., Jin, Y.Q., Wu, H.L., et al. 2013. Removal of PCDD/Fs and PCBs from flue gas using a pilot gas cleaning system. Journal of Environmental Sciences 25 (9): 1833–1840. https://doi.org/10.1016/S1001-0742(12)60292-7.

    Article  CAS  Google Scholar 

  14. Guo, Y.Y., Y.R. Li, T.Y. Zhu, et al. 2016. Modeling of dioxin adsorption on activated carbon. Chemical Engineering Journal 283: 1210–1215. https://doi.org/10.1016/j.cej.2015.08.067.

    Article  CAS  Google Scholar 

  15. Chi, K.H., M.B. Chang, and S.H. Chang. 2006. Evaluation of PCDD/F partitioning between vapor and solid phases in MWI flue gases with temperature variation. Journal of Hazardous Materials 138 (3): 620–627. https://doi.org/10.1016/j.jhazmat.2006.05.117.

    Article  CAS  Google Scholar 

  16. Zhou, X.J., X.D. Li, X.H. Ma, et al. 2014. Adsorption of Polychlorinated Dibenzo-p-Dioxins and Dibenzofurans Vapors on Activated Carbon. Environmental Engineering Science 31 (12): 664–670. https://doi.org/10.1089/ees.2014.0084.

    Article  CAS  Google Scholar 

  17. Yang, R.T., R.Q. Long, J. Padin, et al. 1999. Adsorbents for dioxins: A new technique for sorbent screening for low-volatile organics. Industrial & Engineering Chemistry Research 38 (7): 2726–2731. https://doi.org/10.1021/ie990170.

    Article  CAS  Google Scholar 

  18. Everaert, K., Baeyens, J., and Degrève, J. 2003. Entrained phase adsorption of PCDD/F from incinerator flue gases. Environmental Science & Technology 37 (6): 1219–1224. https://doi.org/10.1021/es020020w.

    Article  CAS  Google Scholar 

  19. Zhou, X.J., Buekens, A., Li, X.D., et al. 2016. Adsorption of polychlorinated dibenzo-p-dioxins/dibenzofurans on activated carbon from hexane. Chemosphere 144: 1264–1269. https://doi.org/10.1016/j.chemosphere.2015.10.003.

    Article  CAS  Google Scholar 

  20. Shin, D., Choi, S., Oh, J.-E., et al. 1999. Evaluation of polychlorinated dibenzo-p-dioxin/Dibenzofuran (PCDD/F) emission in municipal solid waste incinerators. Environmental Science & Technology 33 (15): 2657–2666. https://doi.org/10.1021/es980932r.

    Article  CAS  Google Scholar 

  21. Lu, S., Ji, Y., Buekens, A., et al. 2013. Activated carbon treatment of municipal solid waste incineration flue gas. Waste Management Research 31 (2): 169–177. https://doi.org/10.1177/0734242X12462282.

    Article  CAS  Google Scholar 

  22. Milligan, M.S., and Altwicker, E.R. 1996. Chlorophenol reactions on fly ash. 1. Adsorption desorption equilibria and conversion to polychlorinated dibenzo-p-dioxins. Environmental Science & Technology 30 (1): 225–229. https://doi.org/10.1021/es9502583.

    Article  CAS  Google Scholar 

  23. Yan, J.-H., Peng, Z., Lu, S.-Y., et al. 2006. Removal of PCDDs/Fs from municipal solid waste incineration by entrained-flow adsorption technology. Journal of Zhejiang University-Science A 7 (11): 1896–1903. https://doi.org/10.1631/jzus.2006.A1896.

    Article  CAS  Google Scholar 

  24. Wu, H.L., Lu, S.Y., Yan, J.H., et al. 2011. Thermal removal of PCDD/Fs from medical waste incineration fly ash—effect of temperature and nitrogen flow rate. Chemosphere 84 (3): 361–367. https://doi.org/10.1016/j.chemosphere.2011.02.015.

    Article  CAS  Google Scholar 

  25. Cui, Y.-Y., Yang, G.-H., Xiao, G.-H., et al. 2017. Adsorption of dioxin by bag filter + powdered activated carbon. Water, Air, & Soil Pollution 228 (4): 160. https://doi.org/10.1007/s11270-017-3337-1.

    Article  CAS  Google Scholar 

  26. Inoue, K., and Kawamoto, K. 2005. Fundamental adsorption characteristics of carbonaceous adsorbents for 1,2,3,4-tetrachlorobenzene in a model gas of an incineration plant. Environmental Science and Technology 39 (15): 5844–5850. https://doi.org/10.1021/es0489745.

    Article  CAS  Google Scholar 

  27. Smolka, A., and Schmidt, K.-G. 1997. Gas/particle partitioning before and after flue gas purification by an activated-carbon-filter. Chemosphere 34 (5): 1075–1082. https://doi.org/10.1016/S0045-6535(96)00409-2.

    Article  CAS  Google Scholar 

  28. Matzing, H., Baumann, W., Becker, B., et al. 2001. Adsorption of PCDD/F on MWI fly ash. Chemosphere 42 (5–7): 803–809. https://doi.org/10.1016/S0045-6535(00)00254-X.

    Article  CAS  Google Scholar 

  29. Gunes, G., Saral, A., Yıldız, Ş, et al. 2015. Determination of optimum dose of adsorbent for PCDD/F removal in the flue gas of a medical waste incineration plant. Chemical Engineering Research and Design 104: 695–702. https://doi.org/10.1016/j.cherd.2015.10.010.

    Article  CAS  Google Scholar 

  30. Littarru, P., and Vargiu, L. 2003. Generation of PCDD/F in fly ash from municipal solid waste incinerators. Journal of the Air and Waste Management Association 53 (8): 914–917. https://doi.org/10.1080/10473289.2003.10466247.

    Article  Google Scholar 

  31. Hajizadeh, Y., Onwudili, J.A., and Williams, P.T. 2011. Removal potential of toxic 2378-substituted PCDD/F from incinerator flue gases by waste-derived activated carbons. Waste Management 31 (6): 1194–1201. https://doi.org/10.1016/j.wasman.2011.01.011.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Key R&D Program of China (No. 2019YFC1907000), the National Nature Science Foundation of China (No. 51976188), the Science and Technology Plan Project of Zhejiang Province (No. 2021C03162, No. 2022C03092), the Key Project of Innovation of Science and Technology of Ningbo City (No. 2018B10023), the Natural Science Foundation of Zhejiang Province (No. LY21E060007).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Minghui Tang.

Ethics declarations

Conflict of interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, Y., Liu, Q., Tang, M. et al. Predicting effect factors of dual bag filter system for PCDD/Fs removal from hazardous waste incineration flue gas. Waste Dispos. Sustain. Energy 5, 177–187 (2023). https://doi.org/10.1007/s42768-022-00126-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s42768-022-00126-y

Keywords

Navigation