Skip to main content
Log in

Hierarchical Fabric Emitter for Highly Efficient Passive Radiative Heat Release

  • Research Article
  • Published:
Advanced Fiber Materials Aims and scope Submit manuscript

Abstract

Intense heat waves pose a serious threat to public health and well-being, especially in outdoor spaces. Outdoor high-temperature environments without air conditioners are major challenges for humanity. However, an achievable approach that can provide outdoor cooling without consuming any energy is lacking. Hence, this work presents a novel hierarchical fabric emitter (HFET) used for sunshade sheds to provide radiative outdoor cooling for humanity, the HFET is composed of polyethylene/silicon dioxide/silicon nitride film, melt-blown polypropylene film, and polydimethylsiloxane film from top to bottom. In addition to reflecting 94% solar irradiance by its top surface, the HFET shows selective emission (0.82 in the atmospheric window and 0.38 outside the atmospheric window) on its top surface to outer space and broadband absorption (0.80 in the longwave infrared band) on its bottom surface from the inside. This bidirectional asymmetric emission enables the simulated skin to avoid overheating by 2–11 °C relative to the reverse HFET and bare cases under direct sunlight. Due to its excellent cooling capability, the HFET will be one of the most considerable solutions for outdoor cooling in hot summer environments.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Data availability

The data and materials are available.

References

  1. Fight heat waves to ensure food security. ChinaDaily. 2022. https://epaper.chinadaily.com.cn/a/202208/23/WS6303fe71a3109375516ee9c1.html. Accessed 23 Aug 2022.

  2. Global climate alliance steps up joint action. ChinaDaily. 2022. https://www.chinadaily.com.cn/a/202209/07/WS631801eea310fd2b29e766cb.html. Accessed 07 Sept 2022.

  3. Cai L, Song AY, Li W, Hsu PC, Lin D, Catrysse PB, Liu Y, Peng Y, Chen J, Wang H, Xu J, Yang A, Fan S, Cui Y. Spectrally selective nanocomposite textile for outdoor personal cooling. Adv Mater. 2018;30: e1802152.

    Google Scholar 

  4. Hsu PC, Song AY, Catrysse PB, Liu C, Peng Y, Xie J, Fan S, Cui Y. Radiative human body cooling by nanoporous polyethylene textile. Science. 2016;353:1019.

    CAS  Google Scholar 

  5. Zeng S, Pian S, Su M, Wang Z, Wu M, Liu X, Chen M, Xiang Y, Wu J, Zhang M, Cen Q, Tang Y, Zhou X, Huang Z, Wang R, Tunuhe A, Sun X, Xia Z, Tian M, Chen M, Ma X, Yang L, Zhou J, Zhou H, Yang Q, Li X, Ma Y, Tao G. Hierarchical-morphology metafabric for scalable passive daytime radiative cooling. Science. 2021;373:692.

    CAS  Google Scholar 

  6. Liu Z, Lyu J, Fang D, Zhang X. Nanofibrous Kevlar aerogel threads for thermal insulation in harsh environments. ACS Nano. 2019;13:5703.

    CAS  Google Scholar 

  7. Wu J, Hu R, Zeng S, Xi W, Huang S, Deng J, Tao G. Flexible and robust biomaterial microstructured colored textiles for personal thermoregulation. ACS Appl Mater Interfaces. 2020;12:19015.

    CAS  Google Scholar 

  8. Huang T, Zhu Y, Zhu J, Yu H, Zhang Q, Zhu M. Self-reinforcement of light, temperature-resistant silica nanofibrous aerogels with tunable mechanical properties. Adv Fiber Mater. 2020;26:338.

    CAS  Google Scholar 

  9. Wu J, Zhang M, Su M, Zhang Y, Liang J, Zeng S, Chen B, Cui L, Hou C, Tao G. Robust and flexible multimaterial aerogel fabric toward outdoor passive heating. Adv Fiber Mater. 2022;4:1545.

    CAS  Google Scholar 

  10. Xue T, Zhu C, Feng X, Wali Q, Fan W, Liu T. Polyimide aerogel fibers with controllable porous microstructure for super-thermal insulation under extreme environments. Adv Fiber Mater. 2022;2:338.

    Google Scholar 

  11. Mandal J, Fu Y, Overvig AC, Jia M, Sun K, Shi NN, Zhou H, Xiao X, Yu N, Yang Y. Hierarchically porous polymer coatings for highly efficient passive daytime radiative cooling. Science. 2018;362:315.

    CAS  Google Scholar 

  12. Munday JN. Tackling climate change through radiative cooling. Joule. 2019;3:1057–2060.

    Google Scholar 

  13. Raman AP, Anoma MA, Zhu L, Rephaeli E, Fan S. Passive radiative cooling below ambient air temperature under direct sunlight. Nature. 2014;515:13883.

    Google Scholar 

  14. Li J, Wang X, Liang D, Xu N, Zhu B, Li W, Yao P, Jiang Y, Min X, Huang Z, Zhu S, Fan S, Zhu J. A tandem radiative/evaporative cooler for weather-insensitive and high-performance daytime passive cooling. Sci Adv. 2022;8:eabq0411.

    CAS  Google Scholar 

  15. Feng S, Zhou Y, Liu C, Zhang T, Bu X, Huang Y, He M. Skeleton-inspired optical-selective cellulose-based bio-film as passive radiative cooler and the energy-saving performance evaluation. Chem Eng J. 2023;452: 139377.

    CAS  Google Scholar 

  16. Si Y, Shi S, Dong Z, Wu H, Sun F, Yang J, Hu J. Bioinspired stable single-layer Janus fabric with directional water/moisture transport property for integrated personal cooling management. Adv Fiber Mater. 2022. https://doi.org/10.1007/s42765-022-00200-4.

    Article  Google Scholar 

  17. Shi NN, Tsai CC, Camino F, Bernard GD, Yu N, Wehner R. Keeping cool: enhanced optical reflection and radiative heat dissipation in Saharan silver ants. Science. 2015;349:298.

    CAS  Google Scholar 

  18. Wehner R, Marsh AC, Wehner S. Desert ants on a thermal tightrope. Nature. 1992;357:586.

    Google Scholar 

  19. Tao S, Xu X, Chen M, Xu W, Li L, Fang Z, Zhu C, Lu C, Xu Z. Construction of efficient passive radiative cooling emitter with selective emission in the whole atmospheric window and durable anti-contamination performance. Sol Energy Mater Sol C. 2021;224: 110998.

    CAS  Google Scholar 

  20. Zhai Y, Ma Y, David SN, Zhao D, Lou R, Tan G, Yang R, Yin X. Scalable-manufactured randomized glass-polymer hybrid metamaterial for daytime radiative cooling. Science. 2017;355:1062.

    CAS  Google Scholar 

  21. Lin C, Li Y, Chi C, Kwon YS, Huang J, Wu Z, Zheng J, Liu G, Tso CY, Chao CYH. A solution-processed inorganic emitter with high spectral selectivity for efficient subambient radiative cooling in hot humid climates. Adv Mater. 2022;34:2109350.

    CAS  Google Scholar 

  22. Xiang B, Zhang R, Luo Y, Zhang S, Meng X. 3D porous polymer film with designed pore architecture and auto-deposited SiO2 for highly efficient passive radiative cooling. Nano Energy. 2021;81: 105600.

    CAS  Google Scholar 

  23. Yang M, Zou W, Guo J, Qian Z, Wiersma DS. A Bioinspired, “skin” with cooperative thermo-optical effect for daytime radiative cooling. ACS Appl Mater Inter. 2020;12:25286.

    CAS  Google Scholar 

  24. Yang ZB, Zhang J. Bioinspired radiative cooling structure with randomly stacked fibers for efficient all-day passive cooling. ACS Appl Mater Inter. 2021;13:43387.

    CAS  Google Scholar 

  25. Wang T, Wu Y, Shi L, Hu X, Chen M, Wu L. A structural polymer for highly efficient all-day passive radiative cooling. Nat Commun. 2021;12:365.

    CAS  Google Scholar 

  26. Li T, Zhai Y, He S, Gan W, Wei Z, Heidarinejad M, Dalgo D, Mi R, Zhao X, Song J, Dai J, Chen C, Aili A, Vellore A, Martini A, Yang R, Srebric J, Yin X, Hu L. A radiative cooling structural material. Science. 2019;364:760.

    CAS  Google Scholar 

  27. Zhao H, Sun Q, Zhou J, Deng X, Cui J. Switchable cavitation in silicone coatings for energy saving cooling and heating. Adv Mater. 2020;23:2000870.

    Google Scholar 

  28. Zhong S, Zhang J, Yuan S, Xu T, Zhang X, Xu L, Zuo T, Cai Y, Yi L. Self-assembling hierarchical flexible cellulose films assisted by electrostatic field for passive daytime radiative cooling. Chem Eng J. 2023;451: 138558.

    CAS  Google Scholar 

  29. Xiang B, Zhang R, Zeng X, Luo Y, Luo Z. An easy-to-prepare flexible dual-mode fiber membrane for daytime outdoor thermal management. Adv Fiber Mater. 2022;4:1058.

    CAS  Google Scholar 

  30. Liu X, Zhang M, Hou Y, Pan Y, Liu C, Shen C. Hierarchically superhydrophobic stereo-complex poly (lactic acid) aerogel for daytime radiative cooling. Adv Funct Mater. 2022;32:2207414.

    CAS  Google Scholar 

  31. Liang J, Wu J, Guo J, Li H, Zhou X, Liang S, Qiu C, Tao G. Radiative cooling for passive thermal management towards sustainable carbon neutrality. Natl Sci Rev. 2022;10:nwac208.

    Google Scholar 

  32. Zhu H, Wang Y, Qu M, Pan Y, Zheng G, Dai K, Huang M, Alhadhrami A, Ibrahim M, El-Bahy Z, Liu C, Shen C, Liu X. Electrospun poly(vinyl alcohol)/silica film for radiative cooling. Adv Compos Hybrid Mater. 1966;2022:5.

    Google Scholar 

  33. Li X, Peoples J, Yao P, Ruan X. Ultrawhite BaSO4 paints and films for remarkable daytime subambient radiative cooling. ACS Appl Mater Interfaces. 2021;13:21733.

    CAS  Google Scholar 

  34. Li D, Liu X, Li W, Lin Z, Zhu B, Li Z, Li J, Li B, Fan S, Xie J. Scalable and hierarchically designed polymer film as a selective thermal emitter for high-performance all-day radiative cooling. Nat Nanotechnol. 2021;16:13729.

    Google Scholar 

  35. Chen Z, Zhu L, Raman A, Fan S. Radiative cooling to deep sub-freezing temperatures through a 24-h day–night cycle. Nat Commun. 2016;7:13729.

    CAS  Google Scholar 

  36. Heo SY, Lee GJ, Kim DH, Kim YJ, Song YM. A Janus emitter for passive heat release from enclosures. Sci Adv. 2020;6:eabb1906.

    CAS  Google Scholar 

  37. Yang Z, Zhou Z, Sun H, Chen T, Zhang J. Construction of a ternary channel efficient passive cooling composites with solar-reflective, thermoemissive, and thermoconductive properties. Compos Sci Technol. 2021;207: 108743.

    CAS  Google Scholar 

  38. Yue X, Zhang T, Yang D, Qiu F, Wei G, Zhou H. Multifunctional Janus fibrous hybrid membranes with sandwich structure for on-demand personal thermal management. Nano Energy. 2019;63: 103808.

    CAS  Google Scholar 

  39. Chen M, Pang D, Yan H. Highly solar reflectance and infrared transparent porous coating for non-contact heat dissipations. iScience. 2022;25:104726.

    CAS  Google Scholar 

  40. Yang Z, Jia Y, Zhang J. Hierarchical-morphology metal/polymer heterostructure for scalable multimodal thermal management. ACS Appl Mater Interfaces. 2022;14:24755.

    CAS  Google Scholar 

  41. Yang Z, Sun H, Xi Y, Qi Y, Mao Z, Wang P, Zhang J. Bio-inspired structure using random, three-dimensional pores in the polymeric matrix for daytime radiative cooling. Sol Energy Mater Sol C. 2021;227: 111101.

    CAS  Google Scholar 

  42. Fan X, Zheng W, Singh DJ. Light scattering and surface plasmons on small spherical particles. Light Sci Appl. 2014;3: e179.

    CAS  Google Scholar 

  43. Yang Z, Mao Z, Xiang B, Zhang J. Construction of a binary channel efficient cooling composites with reflective and phase-change properties. Compos Part B: Eng. 2019;178: 107517.

    CAS  Google Scholar 

  44. Sun H, Wang L, Yi J, Wang F, Gao Y, Sha X, Feng J. The influence of melt temperature on the crystal orientation of polypropylene containing talc. Polymer. 2022;256: 125179.

    CAS  Google Scholar 

  45. Zhou L, Song H, Liang J, Singer M, Gan Q. A polydimethylsiloxane-coated metal structure for all-day radiative cooling. Nat Sustain. 2019;2:1.

    Google Scholar 

  46. Zhao D, Aili A, Zhai Y, Xu S, Tan G, Yin X, Yang R. Radiative sky cooling: fundamental principles, materials, and applications. Appl Phys Rev. 2019;6: 021306.

    Google Scholar 

  47. Liu Y, Zhan L, Wen L, Cheng L, Liu S. Effects of particle size and color on photocuring performance of Si3N4 ceramic slurry by stereolithography. J Eur Ceram Soc. 2020;41:2386.

    Google Scholar 

  48. Li P, Wang A, Fan J, Kang Q, Jiang P, Bao H, Huang X. Thermo-optically designed scalable photonic films with high thermal conductivity for subambient and above-ambient radiative cooling. Adv Funct Mater. 2021;32:2109542.

    Google Scholar 

Download references

Acknowledgements

We acknowledge Prof. Jiayue Yang of the Optics-Thermal Radiation Research Center of Shandong University for technical support of the complex refractive index measurement. This work was supported by the Priority Academic Program Development of Jiangsu Higher Education Institution (PAPD), the National Natural Science Foundation of China (52204222), and National Students’ Platform for Innovation and Entrepreneurship Training Program (202210291001Z).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Tingting Chen or Jun Zhang.

Ethics declarations

Conflict of interest

The authors declare no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

42765_2023_271_MOESM1_ESM.docx

Supplementary data related to this article can be found at Section 1. Heat Transfer Model Analysis; Section 2. FDTD Simulations; Section 3. MB–PP Structure Before and After Hot Pressing; Section 4. LWIR Absorption of Common Functional Groups; Section 5. FTIR Spectrum of SiO2 and Si3N4; Section 6. Scattering Efficiency of PP Fibers with Different Diameters; Section 7. The Effect of Si3N4 Content on Optical Properties; Section 8. Solar Transmittance of the PE/SiO2/Si3N4 film; Section 9. Comparison with Commercial Sunshade Shed Samples; Section 10. UV Aging Resistance Test of the HFET; Section 11. Mechanical Property Test of the HFET. (DOCX 6503 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yang, Z., Chen, T., Tang, X. et al. Hierarchical Fabric Emitter for Highly Efficient Passive Radiative Heat Release. Adv. Fiber Mater. 5, 1367–1377 (2023). https://doi.org/10.1007/s42765-023-00271-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s42765-023-00271-x

Keywords

Navigation