Skip to main content
Log in

Enhancing Dehydration Performance of Isopropanol by Introducing Intermediate Layer into Sodium Alginate Nanofibrous Composite Pervaporation Membrane

  • Research Article
  • Published:
Advanced Fiber Materials Aims and scope Submit manuscript

Abstract

A novel three-tier composite membrane based on highly porous nanofibrous substrate was demonstrated for efficient isopropanol dehydration by pervaporation. Here, polyethyleneimine (PEI) modified graphene oxide (GO) sheets were vacuum-assistant assembled onto porous electrospun polyacrylonitrile (PAN) nanofibrous substrate to achieve a smooth, hydrophilic and compact PEI-GO intermediate layer. The introduction of PEI chains endowed GO interlayer with sufficient interaction for bonding adjacent GO nanosheets to enhance stability in water/isopropanol mixture and also with the ascended interlamellar space to improve the water-sorption ability due to the abundant active amino groups. Benefiting from PEI-GO layer, a defect-free sodium alginate (SA) skin layer could be facilely manufactured with elaborately controlled thickness as thin as possible in order to reduce mass transfer resistant and enhance permeability maximally. Meanwhile, the interlayer would also contribute to enhance interfacial adhesion to promote the structure integrity of three-tier thin-film nanofibrous composite (TFNC) membrane in pervaporation dehydration process. After fine-tuning of membrane preparation process, the SA/PEI(75)-GO-60/PAN TFNC membrane exhibited competitive pervaporation performance with the permeate flux of 2009 g/m2 h and the separation factor of 1276 operated at 70 °C for dehydration of 90 wt% isopropanol solution. The unique three-tier composite membrane structure suggested an effective and facile approach to design novel membrane structure for further improvement of pervaporation performance.

Graphic Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2: a
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7: a
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Semenova SI, Ohya H, Soontarapa K. Hydrophilic membranes for pervaporation: an analytical review. Desalination. 1997;110:251.

    CAS  Google Scholar 

  2. Ong YK, Shi GM, Le NL, Tang YP, Zuo J, Nunes SP, Chung T-S. Recent membrane development for pervaporation processes. Prog Polym Sci. 2016;57:1.

    CAS  Google Scholar 

  3. Chapman PD, Oliveira T, Livingston AG, Li K. Membranes for the dehydration of solvents by pervaporation. J Membr Sci. 2008;318:5.

    CAS  Google Scholar 

  4. Zuo J, Chung T-S. Design and synthesis of a fluoro-silane amine monomer for novel thin film composite membranes to dehydrate ethanol via pervaporation. J. Mater. Chem. A. 2013;1:9814.

    CAS  Google Scholar 

  5. Liu J, Bernstein R. High-flux thin-film composite polyelectrolyte hydrogel membranes for ethanol dehydration by pervaporation. J Membr Sci. 2017;534:83.

    CAS  Google Scholar 

  6. Cheng X, Jiang Z, Cheng X, Guo S, Tang L, Yang H, Wu H, Pan F, Zhang P, Cao X. Bimetallic metal-organic frameworks nanocages as multi-functional fillers for water-selective membranes. J Membr Sci. 2018;545:19.

    CAS  Google Scholar 

  7. Yang H, Cheng X, Cheng X, Pan F, Wu H, Liu G, Song Y, Cao X, Jiang Z. Highly water-selective membranes based on hollow covalent organic frameworks with fast transport pathways. J Membr Sci. 2018;565:331.

    CAS  Google Scholar 

  8. Wang Z, Ma H, Hsiao BS, Chu B. Nanofibrous ultrafiltration membranes containing cross-linked poly (ethylene glycol) and cellulose nanofiber composite barrier layer. Polymer. 2014;55:366.

    CAS  Google Scholar 

  9. Wang X, Fang D, Hsiao BS, Chu B. Nanofiltration membranes based on thin-film nanofibrous composites. J Membr Sci. 2014;469:188.

    CAS  Google Scholar 

  10. Wang J, Zhang P, Liang B, Liu Y, Xu T, Wang L, Cao B, Pan K. Graphene oxide as an effective barrier on a porous nanofibrous membrane for water treatment. ACS Appl Mater Interfaces. 2016;8:6211.

    CAS  Google Scholar 

  11. Huang ZM, Zhang YZ, Kotaki M, Ramakrishna S. A review on polymer nanofibers by electrospinning and their applications in nanocomposites. Compos Sci Technol. 2003;63:2223.

    CAS  Google Scholar 

  12. Yu X, Shen L, Zhu Y, Li X, Yang Y, Wang X, Zhu M, Hsiao BS. High performance thin-film nanofibrous composite hemodialysis membranes with efficient middle-molecule uremic toxin removal. J Membr Sci. 2017;523:173.

    CAS  Google Scholar 

  13. Yoon K, Kim K, Wang X, Fang D, Hsiao BS, Chu B. High flux ultrafiltration membranes based on electrospun nanofibrous PAN scaffolds and chitosan coating. Polymer. 2006;47:2434.

    CAS  Google Scholar 

  14. Shen L, Yu X, Cheng C, Song C, Wang X, Zhu M, Hsiao BS. High filtration performance thin film nanofibrous composite membrane prepared by electrospraying technique and hot-pressing treatment. J Membr Sci. 2016;499:470.

    CAS  Google Scholar 

  15. Hung W-S, Lai C-L, An Q, De Guzman M, Shen T-J, Huang Y-H, Chang K-C, Tsou C-H, Hu C-C, Lee K-R. A study on high-performance composite membranes comprising heterogeneous polyamide layers on an electrospun substrate for ethanol dehydration. J Membr Sci. 2014;470:513.

    CAS  Google Scholar 

  16. Zhang M, Lin H, Shen L, Liao BQ, Wu X, Li R. Effect of calcium ions on fouling properties of alginate solution and its mechanisms. J Membr Sci. 2017;525:320.

    CAS  Google Scholar 

  17. Dudek G, Krasowska M, Turczyn R, Gnus M, Strzelewicz A. Structure, morphology and separation efficiency of hybrid Alg/Fe3O4 membranes in pervaporative dehydration of ethanol. Sep Purif Technol. 2017;182:101.

    CAS  Google Scholar 

  18. Zhao J, Fang C, Zhu Y, He G, Pan F, Jiang Z, Zhang P, Cao X, Wang B. Manipulating the interfacial interactions of composite membranes via a mussel-inspired approach for enhanced separation selectivity. J. Mater. Chem. A. 2015;3:19980.

    CAS  Google Scholar 

  19. Ma J, Zhang M, Wu H, Yin X, Chen J, Jiang Z. Mussel-inspired fabrication of structurally stable chitosan/polyacrylonitrile composite membrane for pervaporation dehydration. J Membr Sci. 2010;348:150.

    CAS  Google Scholar 

  20. Xu J, Gao C, Feng X. Thin-film-composite membranes comprising of self-assembled polyelectrolytes for separation of water from ethylene glycol by pervaporation. J Membr Sci. 2010;352:197.

    CAS  Google Scholar 

  21. Chen Y, Xiangli F, Jin W, Xu N. Organic–inorganic composite pervaporation membranes prepared by self-assembly of polyelectrolyte multilayers on macroporous ceramic supports. J Membr Sci. 2007;302:78.

    CAS  Google Scholar 

  22. Mi B. Graphene oxide membranes for ionic and molecular sieving. Science. 2014;343:740.

    CAS  Google Scholar 

  23. Huang K, Liu G, Lou Y, Dong Z, Shen J, Jin W. A graphene oxide membrane with highly selective molecular separation of aqueous organic solution. Angew Chem Int Ed. 2014;126:7049.

    Google Scholar 

  24. Han Y, Xu Z, Gao C. Ultrathin graphene nanofiltration membrane for water purification. Adv Funct Mater. 2013;23:3693.

    CAS  Google Scholar 

  25. Xu WL, Fang C, Zhou F, Song Z, Liu Q, Qiao R, Yu M. Self-assembly: a facile way of forming ultrathin, high-performance graphene oxide membranes for water purification. Nano Lett. 2017;17:2928.

    CAS  Google Scholar 

  26. Nair R, Wu H, Jayaram P, Grigorieva I, Geim A. Unimpeded permeation of water through helium-leak–tight graphene-based membranes. Science. 2012;335:442.

    CAS  Google Scholar 

  27. Cheng C, Shen L, Yu X, Yang Y, Li X, Wang X. Robust construction of a graphene oxide barrier layer on a nanofibrous substrate assisted by the flexible poly(vinylalcohol) for efficient pervaporation desalination. J. Mater. Chem. A. 2017;5:3558.

    CAS  Google Scholar 

  28. Hua D, Rai RK, Zhang Y, Chung T-S. Aldehyde functionalized graphene oxide frameworks as robust membrane materials for pervaporative alcohol dehydration. Chem Eng Sci. 2017;161:341.

    CAS  Google Scholar 

  29. Hung W-S, Tsou C-H, De Guzman M, An Q-F, Liu Y-L, Zhang Y-M, Hu C-C, Lee K-R, Lai J-Y. Cross-linking with diamine monomers to prepare composite graphene oxide-framework membranes with varying d-spacing. Chem Mater. 2014;26:2983.

    CAS  Google Scholar 

  30. Lu J, Gu Y, Chen Y, Yan X, Guo Y, Lang W. Ultrahigh permeability of graphene-based membranes by adjusting D-spacing with poly (ethylene imine) for the separation of dye wastewater. Sep Purif Technol. 2019;210:737.

    CAS  Google Scholar 

  31. Zhang L, Chen B, Ghaffar A, Zhu X. Nanocomposite membrane with polyethylenimine-grafted graphene oxide as a novel additive to enhance pollutant filtration performance. Environ Sci Technol. 2018;52:5920.

    CAS  Google Scholar 

  32. Xu Y, Bai H, Lu G, Li C, Shi G. Flexible graphene films via the filtration of water-soluble noncovalent functionalized graphene sheets. J Am Chem Soc. 2008;130:5856.

    CAS  Google Scholar 

  33. Park WB, Bandyopadhyay P, Nguyen TT, Kuila T, Kim NH, Lee JH. Effect of high molecular weight polyethyleneimine functionalized graphene oxide coated polyethylene terephthalate film on the hydrogen gas barrier properties. Compos. Part B: Eng. 2016;106:316.

    CAS  Google Scholar 

  34. Liu G, Jiang Z, Chen C, Hou L, Gao B, Yang H, Wu H, Pan F, Zhang P, Cao X. Preparation of ultrathin, robust membranes through reactive layer-by-layer (LbL) assembly for pervaporation dehydration. J Membr Sci. 2017;537:229.

    CAS  Google Scholar 

  35. Zhang Y, Zhang S, Chung T-S. Nanometric graphene oxide framework membranes with enhanced heavy metal removal via nanofiltration. Environ Sci Technol. 2015;49:10235.

    CAS  Google Scholar 

  36. Liu C, Liu H, Lu C, Tang K, Zhang Y. Polyethyleneimine-modified graphene oxide/PNIPAm thermoresponsive hydrogels with rapid swelling/deswelling and improved mechanical properties. J Mater Sci. 2017;52:11715.

    CAS  Google Scholar 

  37. Liu H, Kuila T, Kim NH, Ku B-C, Lee JH. In situ synthesis of the reduced graphene oxide–polyethyleneimine composite and its gas barrier properties. J. Mater. Chem. A. 2013;1:3739.

    CAS  Google Scholar 

  38. Roy S, Tang X, Das T, Zhang L, Li Y, Ting S, Hu X, Yue C. Enhanced molecular level dispersion and interface bonding at low loading of modified graphene oxide to fabricate super nylon 12 composites. ACS Appl Mater Interfaces. 2015;7:3142.

    CAS  Google Scholar 

  39. Huang K, Liu G, Shen J, Chu Z, Zhou H, Gu X, Jin W, Xu N. High-efficiency water-transport channels using the synergistic effect of a hydrophilic polymer and graphene oxide laminates. Adv Funct Mater. 2015;25:5809.

    CAS  Google Scholar 

  40. Li Q, Liu Q, Zhao J, Hua Y, Sun J, Duan J, Jin W. High efficient water/ethanol separation by a mixed matrix membrane incorporating MOF filler with high water adsorption capacity. J Membr Sci. 2017;544:68.

    CAS  Google Scholar 

  41. Wang M, Pan F, Yang L, Song Y, Wu H, Cheng X, Liu G, Yang H, Wang H, Jiang Z. Graphene oxide quantum dots incorporated nanocomposite membranes with high water flux for pervaporative dehydration. J Membr Sci. 2018;563:903.

    CAS  Google Scholar 

  42. Yang H, Wu H, Pan F, Li Z, Ding H, Liu G, Jiang Z, Zhang P, Cao X, Wang B. Highly water-permeable and stable hybrid membrane with asymmetric covalent organic framework distribution. J Membr Sci. 2016;520:583.

    CAS  Google Scholar 

  43. Kalyani S, Smitha B, Sridhar S, Krishnaiah A. Pervaporation separation of ethanol–water mixtures through sodium alginate membranes. Desalination. 2008;229:68.

    CAS  Google Scholar 

  44. Kariduraganavar M, Kittur A, Kulkarni S, Ramesh K. Development of novel pervaporation membranes for the separation of water–isopropanol mixtures using sodium alginate and NaY zeolite. J Membr Sci. 2004;238:165.

    CAS  Google Scholar 

  45. Nigiz FU, Dogan H, Hilmioglu ND. Pervaporation of ethanol/water mixtures using clinoptilolite and 4A filled sodium alginate membranes. Desalination. 2012;300:24.

    CAS  Google Scholar 

  46. Magalad VT, Supale AR, Maradur SP, Gokavi GS, Aminabhavi TM. Preyssler type heteropolyacid-incorporated highly water-selective sodium alginate-based inorganic–organic hybrid membranes for pervaporation dehydration of ethanol. Chem Eng J. 2010;159:75.

    CAS  Google Scholar 

  47. Adoor SG, Rajineekanth V, Nadagouda MN, Rao KC, Dionysiou DD, Aminabhavi TM. Exploration of nanocomposite membranes composed of phosphotungstic acid in sodium alginate for separation of aqueous–organic mixtures by pervaporation. Sep Purif Technol. 2013;113:64.

    CAS  Google Scholar 

  48. Liu G, Jiang Z, Cao K, Nair S, Cheng X, Zhao J, Gomaa H, Wu H, Pan F. Pervaporation performance comparison of hybrid membranes filled with two-dimensional ZIF-L nanosheets and zero-dimensional ZIF-8 nanoparticles. J Membr Sci. 2017;523:185.

    CAS  Google Scholar 

  49. Gao C, Zhang M, Ding J, Pan F, Jiang Z, Li Y, Zhao J. Pervaporation dehydration of ethanol by hyaluronic acid/sodium alginate two-active-layer composite membranes. Carbohydr Polym. 2014;99:158.

    CAS  Google Scholar 

  50. Ji C, Xue S, Xu Z. Novel swelling-resistant sodium alginate membrane branching modified by glycogen for highly aqueous ethanol solution pervaporation. ACS Appl Mater Interfaces. 2016;8:27243.

    CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by Natural Science Foundation of Shanghai (19ZR1401300) and Program for Innovative Research Team in University of Ministry of Education of China (IRT_16R13).

Funding

Funding has been received from Natural Science Foundation of Shanghai with Grand No. 19ZR1401300 and Program for Innovative Research Team in University of Ministry of Education of China with Grand No. IRT_16R13.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xuefen Wang.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 438 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, P., Cheng, C., Shen, K. et al. Enhancing Dehydration Performance of Isopropanol by Introducing Intermediate Layer into Sodium Alginate Nanofibrous Composite Pervaporation Membrane. Adv. Fiber Mater. 1, 137–151 (2019). https://doi.org/10.1007/s42765-019-00005-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s42765-019-00005-y

Keywords

Navigation