Skip to main content
Log in

Analysis of interfacial dynamics in stratified and wavy-stratified flow using Laser Doppler Velocimetry

  • Research Article
  • Published:
Experimental and Computational Multiphase Flow Aims and scope Submit manuscript

Abstract

Interfacial behaviour of stratified and wavy-stratified flow is analysed in terms of measured velocity signals in liquid phase using Laser Doppler Velocimetry. Measurement of liquid height (interface level) is achieved using Laser Doppler Velocimetry synchronized with a computerised 3-dimensional traverse system. The precision obtained in measurement of air sheared interface level (liquid height) in this approach is 0.032±0.01 mm. First part of this paper deals with influence of gas and liquid superficial Reynolds numbers on the liquid height for stratified and wavy-stratified flow. With increase in liquid depth, waves are initiated at the gas-liquid interface which is precursor to slug formation. A critical liquid height for onset of slug formation is obtained in this part. The second part deals with the measurement of fluctuations occurring near to the air-sheared interface. These fluctuations are recorded in terms of local velocity of liquid phase and have been used to characterize the behaviour of air-water interface for stratified and wavy-stratified flow. Furthermore, influence of gas and liquid flow rates on local liquid velocity for different stratified and wavy-stratified flow conditions is analysed by plotting the axial velocity profiles in radial direction.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Ahmed, W. 2012. Nuclear Power: Practical Aspects. IntechOpen.

  • Andritsos, N., Hanratty, T. J. 1987. Interfacial instabilities for horizontal gas-liquid flows in pipelines. Int J Multiphase Flow, 13: 583–603.

    Article  Google Scholar 

  • Andritsos, N., Williams, L., Hanratty, T. J. 1989. Effect of liquid viscosity on the stratified-slug transition in horizontal pipe flow. Int J Multiphase Flow, 15: 877–892.

    Article  Google Scholar 

  • Andritsos, N. 1992. Statistical properties of stratified flows. Int J Multiphase Flow, 18: 465–473.

    Article  Google Scholar 

  • Arunkumar, S., Adhavan, J., Venkatesan, M., Das, S. K., Balakrishnan, A. R. 2015. Characterization of gas-liquid two phase flows using dielectric sensors. Flow Meas Instrum, 45: 274–279.

    Article  Google Scholar 

  • Ayati, A. A., Kolaas, J., Jensen, A., Johnson, G. W. 2014. A PIV investigation of stratified gas-liquid flow in a horizontal pipe. Int J Multiphase Flow, 61: 129–143.

    Article  Google Scholar 

  • Ayati, A. A., Kolaas, J., Jensen, A., Johnson, G. W. 2015. Combined simultaneous two-phase PIV and interface elevation measurements in stratified gas/liquid pipe flow. Int J Multiphase Flow, 74: 45–58.

    Article  Google Scholar 

  • Aydin, T. B., Torres, C. F., Karami, H., Pereyra, E., Sarica, C. 2015. On the characteristics of the roll waves in gas-liquid stratified-wavy flow: A two-dimensional perspective. Exp Therm Fluid Sci, 65: 90–102.

    Article  Google Scholar 

  • Baker, O. 1954. Simultaneous flow of oil and gas. Oil Gas J, 53: 185–190.

    Google Scholar 

  • Bech, K. H., Tillmark, N., Alfredsson, P. H., Andersson, H. I. 1995. An investigation of turbulent plane Couette flow at low Reynolds numbers. J Fluid Mech, 286: 291–325.

    Article  Google Scholar 

  • Birvalski, M., Tummers, M. J., Delfos, R., Henkes, R. A. W. M. 2014. PIV measurements of waves and turbulence in stratified horizontal two-phase pipe flow. Int J Multiphase Flow, 62: 161–173.

    Article  Google Scholar 

  • Carey, V. P. 2020. Pool boiling. In: Liquid-Vapor Phase-Change Phenomena. CRC Press, 249–330.

  • Chen, X. T., Cal, X. D., Brill, J. P. 1997. Gas-liquid stratified-wavy flow in horizontal pipelines. J Energy Resour Technol, 119: 209–216.

    Article  Google Scholar 

  • Collier, J. G., Thome, J. R. 1994. Convective Boiling and Condensation. Oxford University Press.

    Google Scholar 

  • Da Silva, M. J., Thiele, S., Abdulkareem, L., Azzopardi, B. J., Hampel, U. 2010. High-resolution gas-oil two-phase flow visualization with a capacitance wire-mesh sensor. Flow Meas Instrum, 21: 191–197.

    Article  Google Scholar 

  • Dykhno, L. A., Williams, L. R., Hanratty, T. J. 1994. Maps of mean gas velocity for stratified flows with and without atomization. Int J Multiphase Flow, 20: 691–702.

    Article  Google Scholar 

  • Fernandino, M., Ytrehus, T. 2006. Determination of flow sub-regimes in stratified air-water channel flow using LDV spectra. Int J Multiphase Flow, 32: 436–446.

    Article  Google Scholar 

  • Ghajar, A. J., Tang, C. C. 2007. Heat transfer measurements, flow pattern maps, and flow visualization for non-boiling two-phase flow in horizontal and slightly inclined pipe. Heat Transfer Eng, 28: 525–540.

    Article  Google Scholar 

  • Hanratty, T. J. 2013. Physics of Gas-Liquid Flows. Cambridge University Press.

    Book  Google Scholar 

  • Hewitt, G. F. 1982. Liquid-gas systems. In: Handbook of Multiphase Systems. Hetsroni, G. Ed. Hemisphere.

  • Hoogendoorn, C. J. 1959. Gas-liquid flow in horizontal pipes. Chem Eng Sci, 9: 205–217.

    Article  Google Scholar 

  • Jeffreys, H. 1925. On the formation of water waves by wind. Proc R Soc Lond A, 107: 189–206.

    Article  Google Scholar 

  • Ko, M. S., Lee, S. Y., Lee, B. A., Yun, B. J., Kim, K. Y., Kim, S. 2013. An electrical impedance sensor for water level measurements in air-water two-phase stratified flows. Meas Sci Technol, 24: 095301.

    Article  Google Scholar 

  • Kordyban, E. S., Ranov, T. 1970. Mechanism of slug formation in horizontal two-phase flow. J Basic Eng, 92: 857–864.

    Article  Google Scholar 

  • Lin, P. Y. 1985. Flow regime transitions in horizontal gas-liquid flow. Ph.D. Dissertation. University of Illinois Urbana.

  • Line, A., Fabre, J. 1997. Stratified gas liquid flow. In: A-to-Z Guide to Thermodynamics, Heat and Mass Transfer, and Fluids Engineering. CRC Press, 1097–1101.

  • Line, A., Masbernat, L., Mire, A., Soualmia, A. 1990. Analysis of the local structures of co-current stratified two-phase flow. In: Proceedings of the European Two-phase Flow Group Meeting.

  • Liu, L., Hu, B., Langsholt, M., Yang, Z. 2014. Characteristics of gas-viscous oil flows in a 0.1 m diameter pipeline measured by an X-ray CT system. In: Proceedings of the 9th North American Conference on Multiphase Technology, BHR-2014-B3.

  • Mandhane, J. M., Gregory, G. A., Aziz, K. 1974. A flow pattern map for gas-liquid flow in horizontal pipes. Int J Multiphase Flow, 1: 537–553.

    Article  Google Scholar 

  • Miles, J. W. 1957. On the generation of surface waves by shear flows. J Fluid Mech, 3: 185.

    Article  MathSciNet  Google Scholar 

  • Mishima, K., Ishii, M. 1980. Theoretical prediction of onset of horizontal slug flow. J Fluids Eng, 102: 441–445.

    Article  Google Scholar 

  • Monni, G., de Salve, M., Panella, B. 2014. Horizontal two-phase flow pattern recognition. Exp Therm Fluid Sci, 59: 213–221.

    Article  Google Scholar 

  • Mosavati, M., Kowsary, F., Mosavati, B. 2013. A novel, noniterative inverse boundary design regularized solution technique using the backward Monte Carlo method. J Heat Transf, 135: 042701.

    Article  Google Scholar 

  • Munson, B. R., Young, D. F., Okiishi, T. H. 2002. Fundamentals of Fluid Mechanics. Wiley.

  • Pitton, E., Ciandri, P., Margarone, M., Andreussi, P. 2014. An experimental study of stratified-dispersed flow in horizontal pipes. Int J Multiphase Flow, 67: 92–103.

    Article  Google Scholar 

  • Schleicher, E., Besim Aydin, T., Vieira, R. E., Torres, C. F., Pereyra, E., Sarica, C., Hampel, U. 2015. Refined reconstruction of liquid-gas interface structures for stratified two-phase flow using wire-mesh sensor. Flow Meas Instrum, 46: 230–239.

    Article  Google Scholar 

  • Shi, J., Kocamustafaogullari, G. 1994. Interfacial measurements in horizontal stratified flow patterns. Nucl Eng Des, 149: 81–96.

    Article  Google Scholar 

  • Spedding, P. L., Spence, D. R. 1993. Flow regimes in two-phase gas-liquid flow. Int J Multiphase Flow, 19: 245–280.

    Article  Google Scholar 

  • Strand, O. 1993. An experimental investigation of stratified two-phase flow in horizontal pipes. Ph.D. Thesis. University of Oslo.

  • Taitel, Y., Dukler, A. E. 1976. A model for predicting flow regime transitions in horizontal and near horizontal gas-liquid flow. AIChE J, 22: 47–55.

    Article  Google Scholar 

  • Thaker, J., Banerjee, J. 2015. Characterization of two-phase slug flow sub-regimes using flow visualization. J Petrol Sci Eng, 135: 561–576.

    Article  Google Scholar 

  • Thaker, J., Banerjee, J. 2016. Influence of intermittent flow subpatterns on erosion-corrosion in horizontal pipe. J Petrol Sci Eng, 145: 298–320.

    Article  Google Scholar 

  • Thaker, J., Banerjee, J. 2017a. Experimental investigations on onset of slugging in horizontal air-water two-phase flow. In: Fluid Mechanics and Fluid Power - Contemporary Research. Lecture Notes in Mechanical Engineering. Saha, A., Das, D., Srivastava, R., Panigrahi, P., Muralidhar, K. Eds. Springer, 157–166.

  • Thaker, J., Banerjee, J. 2017b. Transition of plug to slug flow and associated fluid dynamics. Int J Multiphase Flow, 91: 63–75.

    Article  Google Scholar 

  • Tzotzi, C., Andritsos, N. 2013. Interfacial shear stress in wavy stratified gas-liquid flow in horizontal pipes. Int J Multiphase Flow, 54: 43–54.

    Article  Google Scholar 

  • United Kingdom Accreditation Service (UKAS). 2007. The expression of uncertainty and confidence in measurement M3003.

  • Vaze, M. J., Banerjee, J. 2011. Experimental visualization of two-phase flow patterns and transition from stratified to slug flow. P I Mech Eng C: J Mec, 225: 382–389.

    Article  Google Scholar 

  • Vieira, R. E., Kesana, N. R., Torres, C. F., McLaury, B. S., Shirazi, S. A., Schleicher, E., Hampel, U. 2014. Experimental investigation of horizontal gas-liquid stratified and annular flow using wire-mesh sensor. J Fluids Eng 136: 121301.

    Article  Google Scholar 

  • Wood, M. H., Vetere Arellano, A. L., van Wuk, L. 2013. Corrosion related accidents in petroleum refineries: Lessons learned from accidents in EU and OECD countries. JRC Scientific and Policy Reports, EUR 26331 EN.

Download references

Acknowledgements

The experimental test facility used in the present research is developed using the financial assistance from Science and Engineering Research Board (SERB), Department of Science and Technology (DST), India (sanction letter no. SB/S3/MIMER/0111/2013 dated 23-05-2014) and the Laser Doppler Velocimetry system is established using financial assistance from Centre of Excellence (COE) on Water Resources and Flood Management (sanction letter no. NPIU/TEQIP-II/FIN/47 dated 21-06-2013), Sardar Vallabhbhai National Institute of Technology, India.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jyotirmay Banerjee.

Additional information

Declaration of competing interest

The authors have no competing interests to declare that are relevant to the content of this article.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Saini, S., Thaker, J. & Banerjee, J. Analysis of interfacial dynamics in stratified and wavy-stratified flow using Laser Doppler Velocimetry. Exp. Comput. Multiph. Flow 4, 142–155 (2022). https://doi.org/10.1007/s42757-020-0083-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s42757-020-0083-1

Keywords

Navigation