Skip to main content
Log in

Parameter analysis and wall effect of radiative heat transfer for CFD-DEM simulation in nuclear packed pebble bed

  • Research Article
  • Published:
Experimental and Computational Multiphase Flow Aims and scope Submit manuscript

A Correction to this article was published on 05 February 2022

This article has been updated

Abstract

In the heat transportation of core of high temperature gas-cooled nuclear reactor (HTGR), radiative heat transfer plays a significant role in the CFD-DEM simulations. The numerical investigation is conducted for parameter analysis and wall effect of the thermal radiation. A cell model is presented to discuss the effects of temperature and pebble size. The radiation effective conductivity is directly proportional to pebble diameter and cube of the temperature. For engineering cases, the emissivity on radiation is linear approximately. In the bulk region without wall effect, the radiative thermal conductivity is inversely proportional to the packing density. The effect of solid conductivity and gas absorption can be neglected for common gases with forced convection. With uniform continuum model and discrete particle simulation, the radiative conductivity is inversely proportional to the pebble sphericity and directly proportional to the integral of the radial distribution and radiation interaction function. And radiation characteristics in wall and near-wall region are different from that of bulk region.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Change history

References

  • Chen, J. C., Churchill, S. W. 1963. Radiant heat transfer in packed beds. AIChE J, 9: 35–41.

    Article  Google Scholar 

  • Dai, W., Hanaor, D., Gan, Y. 2019. The effects of packing structure on the effective thermal conductivity of granular media: A grain scale investigation. Int J Therm Sci, 142: 266–279.

    Article  Google Scholar 

  • De Beer, M., du Toit, C. G., Rousseau, P. G. 2018. Experimental study of the effective thermal conductivity in the near-wall region of a packed pebble bed. Nucl Eng Des, 339: 253–268.

    Article  Google Scholar 

  • Godbee, H. W., Ziegler, W. T. 1966. Thermal conductivities of MgO, Al2O3, and ZrO2 powders to 850°C. II. Theoretical. J Appl Phys, 37: 56–65.

    Article  Google Scholar 

  • Gusarov, A. V. 2019. Statistical approach to radiative transfer in the heterogeneous media of thin-wall morphology—II: Applications. J Heat Transf, 141: 012701.

    Google Scholar 

  • Jia, X., Gui, N., Wu, H., Yang, X., Tu, J., Jiang, S. 2017. Numerical study and analysis of the effects of recirculation flow rates in drained pebble flow. Powder Technol, 314: 608–619.

    Article  Google Scholar 

  • Jiang, S., Tu, J., Yang, X., Gui, N. 2019. A review of pebble flow study for pebble bed high temperature gas-cooled reactor. Exp Comput Multiphase Flow, 1: 159–176.

    Article  Google Scholar 

  • Kunii, D., Smith, J. M. 1960. Heat transfer characteristics of porous rocks. AIChE J, 6: 71–78.

    Article  Google Scholar 

  • Latifi, M. S., Colangelo, G., Starace, G. 2020. A CFD study on the effect of size of fuel sphere on PBR core. Exp Comput Multiphase Flow, 2: 109–114.

    Article  Google Scholar 

  • Laubitz, M. J. 1959. Thermal conductivity of powders. Can J Phys, 37: 798–808.

    Article  Google Scholar 

  • Nasr, K., Viskanta, R., Ramadhyani, S. 1994. An experimental evaluation of the effective thermal conductivities of packed beds at high temperatures. J Heat Transf, 116: 829–837.

    Article  Google Scholar 

  • Podlozhnyuk, A., Pirker, S., Kloss, C. 2017. Efficient implementation of superquadric particles in Discrete Element Method within an open-source framework. Comput Particle Mech, 4: 101–118.

    Article  Google Scholar 

  • Rabadan Santana, E., Pozzetti, G., Peters, B. 2019. Application of a dual-grid multiscale CFD-DEM coupling method to model the raceway dynamics in packed bed reactors. Chem Eng Sci, 205: 46–57.

    Article  Google Scholar 

  • Rouhani, M., Huttema, W., Bahrami, M. 2018. Effective thermal conductivity of packed bed adsorbers: Part 1–Experimental study. Int J Heat Mass Tran, 123: 1204–1211.

    Article  Google Scholar 

  • Schotte, W. 1960. Thermal conductivity of packed beds. AIChE J, 6: 63–67.

    Article  Google Scholar 

  • Soltanbeigi, B., Podlozhnyuk, A., Papanicolopulos, S. A., Kloss, C., Pirker, S., Ooi, J. Y. 2018. DEM study of mechanical characteristics of multi-spherical and superquadric particles at micro and macro scales. Powder Technol, 329: 288–303.

    Article  Google Scholar 

  • Tang, Y., Zhang, L., Guo, Q., Xia, B., Yin, Z., Cao, J., Tong, J., Rycroft, C. H. 2019. Analysis of the pebble burnup profile in a pebble-bed nuclear reactor. Nucl Eng Des, 345: 233–251.

    Article  Google Scholar 

  • Wang, S., Luo, K., Hu, C., Lin, J., Fan, J. 2019. CFD-DEM simulation of heat transfer in fluidized beds: Model verification, validation, and application. Chem Eng Sci, 197: 280–295.

    Article  Google Scholar 

  • Wu, H., Gui, N., Yang, X., Tu, J., Jiang, S. 2016a. Effects of particle size and region width on the mixing and dispersion of pebbles in two-region pebble bed. Granul Matter, 18: 76.

    Article  Google Scholar 

  • Wu, H., Gui, N., Yang, X., Tu, J., Jiang, S. 2016b. Effect of scale on the modeling of radiation heat transfer in packed pebble beds. Int J Heat Mass Tran, 101: 562–569.

    Article  Google Scholar 

  • Wu, H., Gui, N., Yang, X., Tu, J., Jiang, S. 2017. Numerical simulation of heat transfer in packed pebble beds: CFD-DEM coupled with particle thermal radiation. Int J Heat Mass Tran, 110: 393–405.

    Article  Google Scholar 

  • Wu, H., Gui, N., Yang, X., Tu, J., Jiang, S. 2018a. A smoothed void fraction method for CFD-DEM simulation of packed pebble beds with particle thermal radiation. Int J Heat Mass Tran, 118: 275–288.

    Article  Google Scholar 

  • Wu, H., Gui, N., Yang, X., Tu, J., Jiang, S. 2018b. Modeling effective thermal conductivity of thermal radiation for nuclear packed pebble beds. J Heat Transf, 140: 042701.

    Article  Google Scholar 

  • Wu, H., Gui, N., Yang, X., Tu, J., Jiang, S. 2018c. Particle-scale investigation of thermal radiation in nuclear packed pebble beds. J Heat Transf, 140: 092002.

    Article  Google Scholar 

  • Wu, H., Gui, N., Yang, X., Tu, J., Jiang, S. 2020. An approximation function model for solving effective radiative heat transfer in packed bed. Ann Nucl Energy, 135: 107000.

    Article  Google Scholar 

  • Wu, Y., Ren, C., Li, R., Yang, X., Tu, J., Jiang, S. 2018d. Measurement on effective thermal diffusivity and conductivity of pebble bed under vacuum condition in High Temperature Gas-cooled Reactor. Prog Nucl Energ, 106: 195–203.

    Article  Google Scholar 

  • Zhang, Z., Dong, Y., Li, F., Zhang, Z., Wang, H., Huang, X., Li, H., Liu, B., Wu, X., Wang, H., Diao, X., Zhang, H., Wang, J. 2016. The Shandong Shidao bay 200 MWe high-temperature gas-cooled reactor pebble-bed module (HTR-PM) demonstration power plant: an engineering and technological innovation. Engineering, 2: 112–118.

    Article  Google Scholar 

Download references

Acknowledgements

The authors are grateful for the support of this research by the China Postdoctoral Science Foundation (Grant No. 2018M640141) and the National Natural Science Foundations of China (Grant Nos. 51406100 and 51576211), the Science Fund for Creative Research Groups of National Natural Science Foundation of China (Grant No. 51321002), the National High-tech R&D Program of China (863 Program, Grant No. 2014AA052701).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hao Wu.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wu, H., Gui, N., Yang, X. et al. Parameter analysis and wall effect of radiative heat transfer for CFD-DEM simulation in nuclear packed pebble bed. Exp. Comput. Multiph. Flow 3, 250–257 (2021). https://doi.org/10.1007/s42757-020-0058-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s42757-020-0058-2

Keywords

Navigation