Skip to main content
Log in

The role of adhesion on mesoscale indentation for determining moduli of hydrated materials

  • Original Paper
  • Published:
Mechanics of Soft Materials Aims and scope Submit manuscript

Abstract

Indentation tests utilizing the load (P)-displacement (δ) data have been common for obtaining bulk moduli (E) of hydrated materials, including biological specimens and hydrogels. While experimentally simple to perform, the data analysis can sometimes be complicated, especially when adhesion between the indenter and sample occurs. The adhesion issue for nano/microindentation on hydrated materials has been addressed in several studies, but hardly any studies have reported the involvement of adhesion in analyzing mesoscale (0.1–1 mm) P-δ data. In this study, we evaluated three methods for analyzing experimental P-δ data acquired from mesoscale indentations on hydrated materials to obtain their E values. They were the classical Hertz model, a modified Hertz approach with P and δ values corrected using Hertz relations, and a modified Hertz approach with the correction of contact radius (a) by including the work of adhesion, W, between the indenter and the sample. The experimental P, a, and δ data were simultaneously collected using transparent gelatin gels, and these P-δ and P-a data were used to verify the adequacy of the three analysis methods. In particular, the E values from these methods were checked against the values obtained using the Johnson-Kendall-Roberts model and the P-a data. Accurate moduli resulted only when W was included in the analysis. The analysis with the inclusion of W was applied to obtain the E values of silicone and other model hydrogels, of which only the experimental P-δ data could be obtained, and their moduli were found to be close to the values reported.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Data availability

The data sets supporting this manuscript have been uploaded as part of the Supplementary Material.

References

  1. Chen, P.Y., Lin, A.Y.M., Lin, Y.S., Seki, Y., Stokes, A.G., Peyras, J., Olevsky, E.A., Meyers, M.A., McKittrick, J.: Structure and mechanical properties of selected biological materials. J. Mech. Behav. Biomed. Mater. 1, 208–226 (2008)

    Article  Google Scholar 

  2. Zou, H., Wu, S., Shen, J.: Polymer/silica nanocomposites: preparation, characterization, properties, and applications. Chem. Rev. 108, 3893–3957 (2008)

    Article  Google Scholar 

  3. Mitragotri, S., Lahann, J.: Physical approaches to biomaterial design. Nat. Mater. 8, 15–23 (2009)

    Article  Google Scholar 

  4. Khatiwala, C.B., Peyton, S.R., Putnam, A.J.: Intrinsic mechanical properties of the extracellular matrix affect the behavior of pre-osteoblastic MC3T3-E1 cells. Am. J. Physiol. Cell Physiol. 290, 1640–1650 (2006)

    Article  Google Scholar 

  5. Yeung, T., Georges, P.C., Flanagan, L.A., Marg, B., Ortiz, M., Funaki, M., Zahir, N., Ming, W., Weaver, V., Janmey, P.A.: Effects of substrate stiffness on cell morphology, cytoskeletal structure, and adhesion. Cell Motil. Cytoskeleton 60, 24–34 (2005)

    Article  Google Scholar 

  6. Discher, D.E., Janmey, P., Wang, Y.-l: Tissue cells feel and respond to the stiffness of their substrate. Science. 310, 1139-1143 (2005)

    Article  Google Scholar 

  7. Lo, C.-M., Wang, H.-B., Dembo, M., Wang, Y.-l: Cell movement is guided by the rigidity of the substrate. Biophys. J. 79, 144–152 (2000)

    Article  Google Scholar 

  8. Engler, A.J., Sen, S., Sweeney, H.L., Discher, D.E.: Matrix elasticity directs stem cell lineage specification. Cell 126, 677–689 (2006)

    Article  Google Scholar 

  9. Banerjee, A., Arha, M., Choudhary, S., Ashton, R.S., Bhatia, S.R., Schaffer, D.V., Kane, R.S.: The influence of hydrogel modulus on the proliferation and differentiation of encapsulated neural stem cells. Biomaterials 30, 4695–4699 (2009)

    Article  Google Scholar 

  10. Eichhorn, S.J., Dufresne, A., Aranguren, M., Marcovich, N.E., Capadona, J.R., Rowan, S.J., Weder, C., Thielemans, W., Roman, M., Renneckar, S., Gindl, W., Veigel, S., Keckes, J., Yano, H., Abe, K., Nogi, M., Nakagaito, A.N., Mangalam, A., Simonsen, J., Benight, A.S., Bismarck, A., Berglund, L.A., Peijs, T.: Review: current international research into cellulose nanofibres and nanocomposites. J. Mater. Sci. 45, 1–33 (2010)

    Article  Google Scholar 

  11. Lee, D., Rahman, M.M., Zhou, Y., Ryu, S.: Three-dimensional confocal microscopy indentation method for hydrogel elasticity measurement. Langmuir 31, 9684–9693 (2015)

    Article  Google Scholar 

  12. Lai, Y., He, D., Hu, Y.: Indentation adhesion of hydrogels over a wide range of length and time scales. Extreme Mech. Lett. 31, 1–11 (2019)

    Article  Google Scholar 

  13. Rubiano, A., Galitz, C., Simmons, C.S.: Mechanical characterization by mesoscale indentation: advantages and pitfalls for tissue and scaffolds. Tissue Eng. Part C-Me. 25, 619–629 (2019)

    Article  Google Scholar 

  14. Rubiano, A., Simmons, C.S.: Mesoscale, cantilever-based indentation device for mechanical characterization of soft matter and biological tissue. bioRxiv. 758342 (2019).

  15. Lai, Y., Hu, Y.: The relation between adhesion properties and network properties of hydrogels: a study based on an indentation adhesion method. Mech. Mater. 159, 103877 (2021)

    Article  Google Scholar 

  16. Hu, Y., You, J.-O., Auguste, D.T., Suo, Z., Vlassak, J.J.: Indentation: a simple, nondestructive method for characterizing the mechanical and transport properties of pH-sensitive hydrogels. J. Mater. Res. 27, 152–160 (2012)

    Article  Google Scholar 

  17. Kalcioglu, Z.I., Mahmoodian, R., Hu, Y., Suo, Z., Van Vliet, K.J.: From macro- to microscale poroelastic characterization of polymeric hydrogels via indentation. Soft Matter 8, 3393–3398 (2012)

    Article  Google Scholar 

  18. Hu, Y., Zhao, X., Vlassak, J.J., Suo, Z.: Using indentation to characterize the poroelasticity of gels. Appl. Phys. Lett. 96, 121904 (2010)

    Article  Google Scholar 

  19. Hengsberger, S., Enstroem, J., Peyrin, F., Zysset, P.: How is the indentation modulus of bone tissue related to its macroscopic elastic response? A validation study. J. Biomech. 36, 1503–1509 (2003)

    Article  Google Scholar 

  20. Li, Q.S., Lee, G.Y.H., Ong, C.N., Lim, C.T.: AFM indentation study of breast cancer cells. Biochem. Biophys. Res. Commun. 374, 609–613 (2008)

    Article  Google Scholar 

  21. Charras, G.T., Horton, M.A.: Single cell mechanotransduction and its modulation analyzed by atomic force microscope indentation. Biophys. J. 82, 2970–2981 (2002)

    Article  Google Scholar 

  22. Johnson, K.L., Kendall, K., Roberts, A.D.: Surface energy and the contact of elastic solids. Proc. R. Soc. Lond., A Math. Phys. Sci. 324, 301–313 (1971)

    Google Scholar 

  23. Shull, K.R.: Contact mechanics and the adhesion of soft solids. Mater. Sci. Eng. R Rep. 36, 1–45 (2002)

    Article  Google Scholar 

  24. Shi, X., Zhao, Y.P.: Comparison of various adhesion contact theories and the influence of dimensionless load parameter. J. Adhes. Sci. Technol. 18, 55–68 (2004)

    Article  Google Scholar 

  25. Long, R., Hall, M.S., Wu, M., Hui, C.-Y.: Effects of gel thickness on microscopic indentation measurements of gel modulus. Biophys. J. 101, 643–650 (2011)

    Article  Google Scholar 

  26. Frey, M.T., Engler, A., Discher, D.E., Lee, J., Wang, Y.L.: Microscopic methods for measuring the elasticity of gel substrates for cell culture: microspheres, microindenters, and atomic force microscopy. Methods Cell Biol., 83, 47-65, (2007)

  27. Sicard, D., Fredenburgh, L.E., Tschumperlin, D.J.: Measured pulmonary arterial tissue stiffness is highly sensitive to AFM indenter dimensions. J. Mech. Behav. Biomed. 74, 118–127 (2017)

    Article  Google Scholar 

  28. Lee, D., Zhang, H., Ryu, S.: Elastic modulus measurement of hydrogels. in: M.I.H. Mondal (Ed.) Cellulose-Based Superabsorbent Hydrogels. Polymers and Polymeric Composites: A Reference Series., Springer, Cham, 2018, pp. 1–21.

  29. Garcia, M., Schulze, K.D., O’Bryan, C.S., Bhattacharjee, T., Sawyer, W.G., Angelini, T.E.: Eliminating the surface location from soft matter contact mechanics measurements. Tribol. – Mater. Surf. Interfaces. 11, 1–6 (2017)

    Article  Google Scholar 

  30. Efremov, Y.M., Bagrov, D.V., Kirpichnikov, M.P., Shaitan, K.V.: Application of the Johnson–Kendall–Roberts model in AFM-based mechanical measurements on cells and gel. Colloids Surf. B. Biointerfaces. 134, 131–139 (2015)

    Article  Google Scholar 

  31. Lin, D.C., Horkay, F.: Nanomechanics of polymer gels and biological tissues: a critical review of analytical approaches in the Hertzian regime and beyond. Soft Matter 4, 669–682 (2008)

    Article  Google Scholar 

  32. Taokaew, S., Phisalaphong, M., Newby, B.M.Z.: Modification of bacterial cellulose with organosilanes to improve attachment and spreading of human fibroblasts. Cellulose 22, 2311–2324 (2015)

    Article  Google Scholar 

  33. Chan, E.P., Hu, Y., Johnson, P.M., Suo, Z., Stafford, C.M.: Spherical indentation testing of poroelastic relaxations in thin hydrogel layers. Soft Matter 8, 1492–1498 (2012)

    Article  Google Scholar 

  34. Hu, Y., Chan, E.P., Vlassak, J.J., Suo, Z.: Poroelastic relaxation indentation of thin layers of gels. J. Appl. Phys. 110, 086103 (2011)

    Article  Google Scholar 

  35. Wang, M., Liu, S., Xu, Z., Qu, K., Li, M., Chen, X., Xue, Q., Genin, G.M., Lu, T.J., Xu, F.: Characterizing poroelasticity of biological tissues by spherical indentation: an improved theory for large relaxation. J. Mech. Phys. Solids. 138, 103920 (2020)

    Article  MathSciNet  Google Scholar 

  36. Mel’nichenko, Y.B., Klepko, V.V., Shilov, V.V.: Self-diffusion of water in gelatin gels: 1. Macroscopic measurements by tracer technique. Polymer. 34, 1019–1023 (1993)

    Article  Google Scholar 

  37. Hu, Y., Suo, Z.: Viscoelasticity and poroelasticity in elastomeric gels. Acta Mech. Solida Sin. 25, 441–458 (2012)

    Article  Google Scholar 

  38. Fowkes, F.M.: Attractive forces at interfaces. Ind. Eng. Chem. 56, 40–52 (1964)

    Article  Google Scholar 

  39. Loskofsky, C., Song, F., Zhang Newby, B.M.: Underwater adhesion measurements using the JKR technique. J. Adhes. 82, 713–730 (2006)

    Article  Google Scholar 

  40. Mata, A., Fleischman, A.J., Roy, S.: Characterization of polydimethylsiloxane (PDMS) properties for biomedical micro/nanosystems. Biomed. Microdevices. 7, 281–293 (2005)

    Article  Google Scholar 

  41. Lee, J.N., Jiang, X., Ryan, D., Whitesides, G.M.: Compatibility of mammalian cells on surfaces of poly(dimethylsiloxane). Langmuir 20, 11684–11691 (2004)

    Article  Google Scholar 

  42. Ahearne, M., Yang, Y., El Haj, A.J., Then, K.Y., Liu, K.-K.: Characterizing the viscoelastic properties of thin hydrogel-based constructs for tissue engineering applications. J. R. Soc. Interface. 2, 455–463 (2005)

    Article  Google Scholar 

  43. Dong, R., Jensen, T.W., Engberg, K., Nuzzo, R.G., Leckband, D.E.: Variably elastic hydrogel patterned via capillary action in microchannels. Langmuir 23, 1483–1488 (2007)

    Article  Google Scholar 

  44. Stolz, M., Raiteri, R., Daniels, A.U., VanLandingham, M.R., Baschong, W., Aebi, U.: Dynamic elastic modulus of porcine articular cartilage determined at two different levels of tissue organization by indentation-type atomic force microscopy. Biophys. J. 86, 3269–3283 (2004)

    Article  Google Scholar 

Download references

Funding

The authors are grateful to the Royal Golden Jubilee Ph.D program from the Thailand Research Fund for the financial support to initiate this study and Nagaoka University of Technology.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bi-min Zhang Newby.

Additional information

Publisher's note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Siriporn Taokaew is the first author.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 4272 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Taokaew, S., Pineault, H., Covington, K. et al. The role of adhesion on mesoscale indentation for determining moduli of hydrated materials. Mech Soft Mater 4, 1 (2022). https://doi.org/10.1007/s42558-021-00039-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s42558-021-00039-6

Keywords

Navigation