Skip to main content
Log in

A Liouville Theorem for Möbius Invariant Equations

  • Original Article
  • Published:
Peking Mathematical Journal Aims and scope Submit manuscript

Abstract

In this paper, we classify Möbius invariant differential operators of second order in two-dimensional Euclidean space, and establish a Liouville type theorem for general Möbius invariant elliptic equations. The equations are naturally associated with a continuous family of convex cones \(\Gamma _p\) in \(\mathbb R^2\), with parameter \(p\in [1, 2]\), joining the half plane \(\Gamma _1:=\{ (\lambda _1, \lambda _2):\lambda _1+\lambda _2>0\}\) and the first quadrant \(\Gamma _2:=\{ (\lambda _1, \lambda _2):\lambda _1, \lambda _2>0\}\). Chen and C. M. Li established in 1991 a Liouville type theorem corresponding to \(\Gamma _1\) under an integrability assumption on the solution. The uniqueness result does not hold without this assumption. The Liouville type theorem we establish in this paper for \(\Gamma _p\), \(1<p\le 2\), does not require any additional assumption on the solution as for \(\Gamma _1\). This is reminiscent of the Liouville type theorems in dimensions \(n\ge 3\) established by Caffarelli, Gidas and Spruck in 1989 and by A. B. Li and Y. Y. Li in 2003–2005, where no additional assumption was needed either. On the other hand, there is a striking new phenomena in dimension \(n=2\) that \(\Gamma _p\) for \(p=1\) is a sharp dividing line for such uniqueness result to hold without any further assumption on the solution. In dimensions \(n\ge 3\), there is no such dividing line.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Abanto, D.P., Espinar, J.M.: Escobar type theorems for elliptic fully nonlinear degenerate equations. Am. J. Math. 141(5), 1179–1216 (2019)

    Article  MathSciNet  MATH  Google Scholar 

  2. Barbosa, E., Cavalcante, M.P., Espinar, J.M.: Min-Oo conjecture for fully nonlinear conformally invariant equations. Commun. Pure Appl. Math. 72(11), 2259–2281 (2019)

    Article  MathSciNet  MATH  Google Scholar 

  3. Bo, L.Y., Sheng, W.M.: Some rigidity properties for manifolds with constant \(k\)-curvature of modified Schouten tensor. J. Geom. Anal. 29(3), 2862–2887 (2019)

    Article  MathSciNet  MATH  Google Scholar 

  4. Caffarelli, L., Cabré, X.: Fully Nonlinear Elliptic Equations. American Mathematical Society Colloquium Publications, Vol. 43. American Mathematical Society, Providence (1995)

    Google Scholar 

  5. Caffarelli, L., Gidas, B., Spruck, J.: Asymptotic symmetry and local behavior of semilinear elliptic equations with critical Sobolev growth. Commun. Pure Appl. Math. 42(3), 271–297 (1989)

    Article  MathSciNet  MATH  Google Scholar 

  6. Caffarelli, L., Li, Y.Y., Nirenberg, L.: Some remarks on singular solutions of nonlinear elliptic equations. I. J. Fixed Point Theory Appl. 5(2), 353–395 (2009)

  7. Case, J.S.: The weighted \(\sigma _k\)-curvature of a smooth metric measure space. Pac. J. Math. 299(2), 339–399 (2019)

    Article  MathSciNet  MATH  Google Scholar 

  8. Case, J.S., Wang, Y.: Boundary operators associated to the \(\sigma _k\)-curvature. Adv. Math. 337, 83–106 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  9. Case, J.S., Wang, Y.: Towards a fully nonlinear sharp Sobolev trace inequality. J. Math. Study 53(4), 402–435 (2020)

    Article  MathSciNet  MATH  Google Scholar 

  10. Chang, K.C., Liu, J.Q.: On Nirenberg’s problem. Int. J. Math. 4(1), 35–58 (1993)

    Article  MathSciNet  MATH  Google Scholar 

  11. Chang, S.-Y.A., Gursky, M. J., Yang, P.: An equation of Monge–Ampère type in conformal geometry, and four-manifolds of positive Ricci curvature. Ann. Math. (2) 155(3), 709–787 (2002)

  12. Chang, S.-Y.A., Gursky, M.J., Yang, P.: An a priori estimate for a fully nonlinear equation on four-manifolds. J. Anal. Math. 87, 151–186 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  13. Chang, S.-Y.A., Han, Z.-C., Yang, P.: On the prescribing \(\sigma _2\) curvature equation on \({{\mathbb{S}}^4}\). Calc. Var. Partial Diff. Equ. 40(3–4), 539–565 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  14. Chang, S.-Y.A., Yang, P.: Prescribing Gaussian curvature on \(\mathbb{S}^2\). Acta Math. 159(3–4), 215–259 (1987)

    Article  MathSciNet  MATH  Google Scholar 

  15. Chen, W.X., Li, C.M.: Classification of solutions of some nonlinear elliptic equations. Duke Math. J. 63(3), 615–622 (1991)

    Article  MathSciNet  MATH  Google Scholar 

  16. Chou, K.S., Wan, T.Y.-H.: Asymptotic radial symmetry for solutions of \(\Delta u+ e^ u= 0\) in a punctured disc. Pac. J. Math. 163(2), 269–276 (1994)

    Article  MathSciNet  MATH  Google Scholar 

  17. Fang, H., Wei, W.: \(\sigma _2\) Yamabe problem on conic 4-sphere. Calc. Var. Partial Diff. Equ. 58(4), Paper No. 119, 19 pp. (2019)

  18. Fang, H., Wei, W.: A \(\sigma _2\) Penrose inequality for conformal asymptotically hyperbolic 4-discs. arXiv:2003.02875

  19. Gidas, B., Ni, W.M., Nirenberg, L.: Symmetry and related properties via the maximum principle. Commun. Math. Phys. 68(3), 209–243 (1979)

    Article  MathSciNet  MATH  Google Scholar 

  20. Ge, Y.X., Wang, G.F.: On a fully nonlinear Yamabe problem. Ann. Sci. École Norm. Sup. (4) 39(4), 569–598 (2006)

  21. González, M.d.M., Li, Y.Y., Nguyen, L.: Existence and uniqueness to a fully nonlinear version of the Loewner–Nirenberg problem. Commun. Math. Stat. 6(3), 269–288 (2018)

  22. Guan, P.F., Wang, G.F.: A fully nonlinear conformal flow on locally conformally flat manifolds. J. Reine Angew. Math. 557, 219–238 (2003)

    MathSciNet  MATH  Google Scholar 

  23. Gursky, M.J., Streets, J.: A formal Riemannian structure on conformal classes and uniqueness for the \(\sigma _2\)-Yamabe problem. Geom. Topol. 22(6), 3501–3573 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  24. Gursky, M.J., Viaclovsky, J.A.: Prescribing symmetric functions of the eigenvalues of the Ricci tensor. Ann. Math. (2) 166(2), 475–531 (2007)

  25. Han, Q., Li, X.X., Li, Y.C.: Asymptotic expansions of solutions of the Yamabe equation and the \(\sigma _k\)-Yamabe equation near isolated singular points. Commun. Pure Appl. Math. 74(9), 1905-1970 (2021) 

    Article  MATH  Google Scholar 

  26. Han, Z.-C.: Prescribing Gaussian curvature on \(\mathbb{S}^2\). Duke Math. J. 61(3), 679–703 (1990)

    Article  MathSciNet  MATH  Google Scholar 

  27. He, W.: The Gursky–Streets equations. Math. Ann. (2020). https://doi.org/10.1007/s00208-020-02021-5

  28. Jiang, F.D., Trudinger, N.S.: Oblique boundary value problems for augmented Hessian equations II. Nonlinear Anal. 154, 148–173 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  29. Jiang, F.D., Trudinger, N.S.: Oblique boundary value problems for augmented Hessian equations I. Bull. Math. Sci. 8(2), 353–411 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  30. Jiang, F.D., Trudinger, N.S.: Oblique boundary value problems for augmented Hessian equations III. Commun. Partial Differ. Equ. 44(8), 708–748 (2019)

    Article  MathSciNet  MATH  Google Scholar 

  31. Jin, T.L., Li, Y.Y., Xiong, J.G.: The Nirenberg problem and its generalizations: a unified approach. Math. Ann. 369(1–2), 109–151 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  32. Li, A.B., Li, Y.Y.: On some conformally invariant fully nonlinear equations. Commun. Pure Appl. Math. 56(10), 1416–1464 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  33. Li, A.B., Li, Y.Y.: On some conformally invariant fully nonlinear equations, II. Liouville, Harnack and Yamabe. Acta Math. 195, 117–154 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  34. Li, Y.Y.: Degree theory for second order nonlinear elliptic operators and its applications. Commun. Partial Diff. Equ. 14(11), 1541–1578 (1989)

    Article  MathSciNet  MATH  Google Scholar 

  35. Li, Y.Y.: Local gradient estimates of solutions to some conformally invariant fully nonlinear equations. Commun. Pure Appl. Math. 62(10), 1293–1326 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  36. Li, Y.Y., Lu, H., Lu, S.Y.: On the \(\sigma_k\)-Nirenberg problem on \({\mathbb{S}}^2\). arXiv:2108.02375

  37. Li, Y.Y., Nguyen, L.: A compactness theorem for a fully nonlinear Yamabe problem under a lower Ricci curvature bound. J. Funct. Anal. 266(6), 3741–3771 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  38. Li, Y.Y., Nguyen, L.: Existence and uniqueness of Green’s function to a nonlinear Yamabe problem. arXiv:2001.00993 (to appear in Commun. Pure Appl. Math.)

  39. Li, Y.Y., Nguyen, L.: Solutions to the \(\sigma _k\)-Loewner−Nirenberg problem on annuli are locally Lipschitz and not differentiable. J. Math. Study 54(2), 123–141 (2021)

    Article  MathSciNet  MATH  Google Scholar 

  40. Li, Y.Y., Nguyen, L., Wang, B.: Comparison principles and Lipschitz regularity for some nonlinear degenerate elliptic equations. Calc. Var. Partial Diff. Equ. 57(4), Paper No. 96, 29 pp. (2018)

  41. Li, Y.Y., Nguyen, L., Wang, B.: On the \(\sigma _k\)-Nirenberg problem. arXiv:2008.08437

  42. Li, Y.Y., Wang, B.: Comparison principles for some fully nonlinear sub-elliptic equations on the Heisenberg group. Anal. Theory Appl. 35(3), 312–334 (2019)

    Article  MathSciNet  MATH  Google Scholar 

  43. Li, Y.Y., Zhang, L.: Liouville-type theorems and Harnack-type inequalities for semilinear elliptic equations. J. Anal. Math. 90, 27–87 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  44. Li, Y.Y., Zhu, M.J.: Uniqueness theorems through the method of moving spheres. Duke Math. J. 80(2), 383–417 (1995)

    Article  MathSciNet  MATH  Google Scholar 

  45. Liouville, J.: Sur l’équation aux différences partielles \((\partial ^2 \log \lambda /\partial u\partial v)\pm \lambda /2a^2=0\). J. Math. 18, 71–72 (1853)

    Google Scholar 

  46. Nitsche, J. C. C.: Elementary proof of Bernstein’s theorem on minimal surfaces. Ann. Math. (2) 66, 543–544 (1957)

  47. Obata, M.: The conjectures on conformal transformations of Riemannian manifolds. J. Diff. Geom. 6, 247–258 (1971/72)

  48. Santos, A.S.: Solutions to the singular \(\sigma _2\)-Yamabe problem with isolated singularities. Indiana Univ. Math. J. 66(3), 741–790 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  49. Sheng, W.M., Trudinger, N.S., Wang, X.-J.: The Yamabe problem for higher order curvatures. J. Diff. Geom. 77(3), 515–553 (2007)

    MathSciNet  MATH  Google Scholar 

  50. Sui, Z.N.: Complete conformal metrics of negative Ricci curvature on Euclidean spaces. J. Geom. Anal. 27(1), 893–907 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  51. Trudinger, N.S.: From optimal transportation to conformal geometry. In: Geometric Analysis. Progress in Mathematics, Vol. 333. Birkhäuser, Boston, 511–520 (2020)

    Google Scholar 

Download references

Acknowledgements

Yanyan Li’s research was partially supported by NSF Grants DMS-1501004, DMS-2000261, and Simons Fellows Award 677077. Han Lu’s research was partially supported by NSF Grants DMS-1501004, DMS-2000261. Siyuan Lu’s research was partially supported by NSERC Discovery Grant.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yanyan Li.

Appendix A: Two Calculus Lemmas

Appendix A: Two Calculus Lemmas

We now state two calculus lemmas for the reader’s convenience.

Lemma A.1

Let \(u\in C^1(\mathbb {R}^2)\) satisfy

$$\begin{aligned} u\bigg(x+\frac{\lambda ^2(y-x)}{|y-x|^2}\bigg)-4\ln \frac{|y-x|}{\lambda }\le u(y), \quad \forall\lambda >0, \ x\in \mathbb {R}^2, \ |y-x|\ge \lambda . \end{aligned}$$

Then u must be constant.

Proof

Let \(f={\rm e}^u\), then we have

$$\begin{aligned} \bigg(\frac{\lambda }{|y-x|}\bigg)^4f\bigg(x+\frac{\lambda ^2(y-x)}{|y-x|^2}\bigg)\le f(y), \quad \forall \lambda >0, \ x\in \mathbb {R}^2, \ |y-x|\ge \lambda. \end{aligned}$$

By [43, Lemma 11.1] (see also [44, Lemma 3.3]), we conclude that f is a constant; hence, u is a constant. \(\square\)

Lemma A.2

Let \(u\in C^1(\mathbb {R}^2)\). Suppose that for every \(x\in \mathbb {R}^2\), there exists \(\lambda (x)>0\) such that

$$\begin{aligned} u_{x,\lambda (x)}(y)=u(y),\quad y\in \mathbb {R}^2\backslash \{x\}. \end{aligned}$$

Then for some \(a>0\), \(b>0\), \(\bar{x}\in \mathbb {R}^2\),

$$\begin{aligned} u(x)=2\ln \frac{8a}{8|x-\bar{x}|^2+b}. \end{aligned}$$

Proof

Let \(f={\rm e}^u\), then we have, for every \(x\in \mathbb {R}^2\), there exists \(\lambda (x)>0\) such that

$$\begin{aligned} \bigg(\frac{\lambda }{|y-x|}\bigg)^4f\bigg(x+\frac{\lambda ^2(y-x)}{|y-x|^2}\bigg)=f(y),\quad y\in \mathbb {R}^2\backslash \{x\}. \end{aligned}$$

By [43, Lemma 11.1] (see also [44, Lemma 3.7]),

$$\begin{aligned} f(x)=\pm \bigg(\frac{a}{d+|x-\bar{x}|^2}\bigg)^2. \end{aligned}$$

Lemma A.2 follows. \(\square\)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, Y., Lu, H. & Lu, S. A Liouville Theorem for Möbius Invariant Equations. Peking Math J 6, 609–634 (2023). https://doi.org/10.1007/s42543-021-00043-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s42543-021-00043-9

Keywords

Mathematics Subject Classification

Navigation