Skip to main content

Advertisement

Log in

Proteomics: an emerging tool for the discovery of bone mineral density molecular pathways

  • Review
  • Published:
Journal of Proteins and Proteomics Aims and scope Submit manuscript

Abstract

Osteoporosis is a polygenic disease associated with low bone mineral density and deterioration of bone miniscule architecture and increased chance of bone fractures. However, several signaling pathways regulate bone mineral density including parathyroid hormone (PTH), Core-binding factor α-1 (CBFA1), Wnt/β-catenin, the receptor activator of the nuclear factor kappa-B (NF-κB) ligand (RANKL), myostatin, estrogen, and osteogenic exercise signaling pathways. These signaling pathways occur at protein level that depends not only on messenger RNA transcriptional regulation but also on a number of translational and posttranslational controls. Moreover, proteomic alterations in bone tissue due to a disease may occur in several ways that are unpredictable from either genome or transcriptome analysis. Decades of genome and transcriptome analyses have identified few causative genes; nonetheless, the majority of osteoporosis susceptibility genes remain unknown. It appears that a deeper view of bone proteome alterations will influence bone health and disease. This article highlights the efficacy of proteomics as an emerging tool for the discovery of bone mineral density molecular pathways.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

Availability of data and materials

All data will be available through the journal website.

Code availability

Not applicable.

References

  • Abdulameer SA, Sulaiman SAS, Hassali MAA, Subramaniam K, Sahib MN (2012) Osteoporosis and type 2 diabetes mellitus: what do we know, and what we can do? Patient Prefer Adherence 6:435–448

    PubMed  PubMed Central  Google Scholar 

  • Acampora D, Merlo GR, Paleari L, Zerega B, Postiglione MP, Mantero S, Bober E, Barbieri O, Simeone A, Levi G (1999) Craniofacial, vestibular and bone defects in mice lacking the Distal-less-related gene Dlx5. Development 126:3795–3809

    CAS  PubMed  Google Scholar 

  • Akter R, Rivas D, Geneau G, Drissi H, Duque G (2009) Effect of Lamin A/c knockdown on osteoblast differentiation and function. J Bone Miner Res 24:283–293

    CAS  PubMed  Google Scholar 

  • Al Anouti F, Taha Z, Shamim S, Khalaf K, Al Kaabi L, Alsafar H (2019) An insight into the paradigms of osteoporosis: from genetics to biomechanics. Bone Rep 11:100216

    PubMed  PubMed Central  Google Scholar 

  • Albagha OM, Ralston SH (2006) Genetics and osteoporosis. Rheum Dis Clin North Am 32:659–680

    PubMed  Google Scholar 

  • Al-Bari AA, Al Mamun A (2020) Current advances in regulation of bone homeostasis. FASEB Bioadv 2(11):668–679

    PubMed  PubMed Central  Google Scholar 

  • Ardite E, Panés J, Miranda M, Salas A, Elizalde JI, Sans M, Arce Y, Bordas JM, Fernández-Checa JC, Piqué JM (1998) Effects of steroid treatment on activation of nuclear factor kappa-B in patients with inflammatory bowel disease. Br J Pharmacol 124:431–433

    CAS  PubMed  PubMed Central  Google Scholar 

  • Ashton BA, Allen TD, Howlett CR et al (1980) Formation of bone and cartilage by marrow stromal cells in diffusion chambers in vivo. Clin Orthop 1980:294–307

    Google Scholar 

  • Baxter-Jones AD, Faulkner RA, Forwood MR, Mirwald RL, Bailey DA (2011) Bone mineral accrual from 8 to 30 years of age: an estimation of peak bone mass. J Bone Miner Res 26:1729–1739

    PubMed  Google Scholar 

  • Becker DJ, Kilgore ML, Morrisey MA (2010) The societal burden of osteoporosis. Curr Rheumatol Rep 12:186–191

    PubMed  Google Scholar 

  • Bialek P, Kern B, Yang X, Schrock M, Sosic D, Hong N, Wu H, Yu K, Ornitz DM, Olson EN, Justice MJ, Karsenty G (2004) A twist code determines the onset of osteoblast differentiation. Dev Cell 6:423–435

    CAS  PubMed  Google Scholar 

  • Bianco P, Robey PG (2015) Skeletal stem cells. Development 142:1023–1027

    CAS  PubMed  PubMed Central  Google Scholar 

  • Blair HC, Schlesinger PH, Huang CL et al (2007) Calcium signaling and calcium transport in bone disease. Subcell Biochem 45:539–562

    CAS  PubMed  PubMed Central  Google Scholar 

  • Bonafe L, Cormier-Daire V, Hall C, Lachman R, Mortier G, Mundlos S et al (2015) Nosology and classification of genetic skeletal disorders:2015 revision. Am J Med Genet A 167:2869–2892

    CAS  Google Scholar 

  • Burge R, Dawson-Hughes B, Solomon DH, Wong JB, King A, Tosteson A (2007) Incidence and economic burden of osteoporosis-related fractures in the United States 2005–2025. J Bone Miner Res 22:465–475

    PubMed  Google Scholar 

  • Cappellini E, Jensen LJ, Szklarczyk D, Ginolhac A, da Fonseca RA, Stafford TW, Holen SR, Collins MJ, Orlando L, Willerslev E, Gilbert MT, Olsen JV (2012) Proteomic analysis of a pleistocene mammoth femur reveals more than one hundred ancient bone proteins. J Proteome Res 11(2):917–926

    CAS  PubMed  Google Scholar 

  • Chew CK, Clarke BL (2018) Causes of low peak bone mass in women. Maturitas 111:61–68

    PubMed  Google Scholar 

  • Cillero-Pastor B, Ruiz-Romero C, Caramés B, López-Armada MJ, Blanco FJ (2010) Proteomic analysis by two-dimensional electrophoresis to identify the normal human chondrocyte proteome stimulated by tumor necrosis factor alpha and interleukin-1beta. Arthritis Rheum 62:802–814

    CAS  PubMed  Google Scholar 

  • Conrads KA, Yu LR, Lucas DA, Zhou M, Chan KC, Simpson KA, Schaefer CF, Issaq HJ, Veenstra TD, Beck GR Jr, Conrads TP (2004) Quantitative proteomic analysis of inorganic phosphate-induced murine MC3T3-E1 osteoblast cells. Electrophoresis 25:1342–1352

    CAS  PubMed  Google Scholar 

  • Cornelius C, Koverech G, Crupi R, Di Paola R, Koverech A, Lodato F, Scuto M, Salinaro AT, Cuzzocrea S, Calabrese EJ, Calabrese V (2014) Osteoporosis and Alzheimer pathology:role of cellular stress response and hormetic redox signaling in aging and bone remodeling. Front Pharmacol 5:120

    PubMed  PubMed Central  Google Scholar 

  • Costantini A, Mäkitie O (2016) Value of rare low bone mass diseases for osteoporosis genetics. BoneKEy Rep. https://doi.org/10.1038/bonekey.2015.143 (Article number: 773)

    Article  PubMed  PubMed Central  Google Scholar 

  • Cox J, Mann M (2007) Is proteomics the new genomics? Cell 130:395–398

    CAS  PubMed  Google Scholar 

  • Czupalla C, Mansukoski H, Riedl T, Thiel D, Krause E, Hoflack B (2006) Proteomic analysis of lysosomal acid hydrolases secreted by osteoclasts: implications for lytic enzyme transport and bone metabolism. Mol Cell Proteomics 5:134–143

    CAS  PubMed  Google Scholar 

  • De Vry CG, Prasad S, Komuves L, Lorenzana C, Parham C, Le T, Adda S, Hoffman J, Kahoud N, Garlapati R, Shyamsundar R, Mai K, Zhang J, Muchamuel T, Dajee M, Schryver B, McEvoy LM, Ehrhardt RO (2007) Non-viral delivery of nuclear factor-κB decoy ameliorates murine inflammatory bowel disease and restores tissue homeostasis. Gut 56:524–533

    PubMed  Google Scholar 

  • Dobreva G, Chahrour M, Dautzenberg M, Chirivella L, Kanzler B, Farinas I, Karsenty G, Grosschedl R (2006) SATB2 is a multifunctional determinant of craniofacial patterning and osteoblast differentiation. Cell 125:971–986

    CAS  PubMed  Google Scholar 

  • Duan Y, Duboeuf F, Munoz F, Delmas PD, Seeman E (2006) The fracture risk index and bone mineral density as predictors of vertebral structural failure. Osteoporos Int 17:54–60

    PubMed  Google Scholar 

  • Evans CH, Liu FJ, Glatt V, Hoyland JA, Kirker-Head C, Walsh A, Betz O, Wells JW, Betz V, Porter RM, Saad FA, Gerstenfeld LC, Einhorn TA, Harris MB, Vrahas MS (2009) Use of genetically modified muscle and fat grafts to repair defects in bone and cartilage. Eur Cell Mater 18:96–111

    CAS  PubMed  PubMed Central  Google Scholar 

  • Farber CR (2012) System genetics: a novel approach to dissect the genetic basis of osteoporosis. Curr Osteoporos Rep 10:228–235

    PubMed  PubMed Central  Google Scholar 

  • Friedenstein AJ, Latzinik NW, Grosheva AG et al (1982) Marrow microenvironment transfer by heterotopic transplantation of freshly isolated and cultured cells in porous sponges. Exp Hematol 10:217–227

    CAS  PubMed  Google Scholar 

  • Ge M, Ke R, Cai T, Yang J, Mu X (2015) Identification and proteomic analysis of osteoblast-derived exosomes. Biochem Biophys Res Commun 467:27–32

    CAS  PubMed  Google Scholar 

  • Giusta MS, Andrade H, Santos AV, Castanheira P, Lamana L, Pimenta AM, Goes AM (2010) Proteomic analysis of human mesenchymal stromal cells derived from adipose tissue undergoing osteoblast differentiation. Cytotherapy 12:478–790

    CAS  PubMed  Google Scholar 

  • Hanash S (2003) Disease proteomics. Nature 422:226–232

    CAS  PubMed  Google Scholar 

  • Herbert AJ, Williams AG, Hennis PJ et al (2019) The interactions of physical activity, exercise and genetics and their associations with bone mineral density: implications for injury risk in elite athletes. Eur J Appl Physiol 119(1):29–47

    PubMed  Google Scholar 

  • Hernlund E, Svedbom A, Ivergård M, Compston J, Cooper C, Stenmark J, McCloskey EV, Jönsson B, Kanis JA (2013) Osteoporosis in the European Union: medical management, epidemiology and economic burden. Arch Osteoporosis 8:136–251

    CAS  Google Scholar 

  • Hingorjo MR, Syed S, Qureshi MA (2008) Role of exercise in osteoporosis prevention—current concepts. J Pak Med Assoc 58:78–81

    PubMed  Google Scholar 

  • Hinoi E, Fujimori S, Wang L, Hojo H, Uno K, Yoneda Y (2006) Nrf2 negatively regulates osteoblast differentiation via interfering with Runx2-dependent transcriptional activation. J Biol Chem 281:18015–18024

    CAS  PubMed  Google Scholar 

  • Hong D, Chen HX, Yu HQ, Liang Y, Wang C, Lian QQ, Deng HT, Ge RS (2010) Morphological and proteomic analysis of early stage of osteoblast differentiation in osteoblastic progenitor cells. Exp Cell Res 316:2291–2300

    CAS  PubMed  PubMed Central  Google Scholar 

  • Hong D, Chen HX, Yu HQ, Wang C, Deng HT, Lian QQ, Ge RS (2011) Quantitative proteomic analysis of dexamethasone-induced effects on osteoblast differentiation, proliferation, and apoptosis in MC3T3-E1 cells using SILAC. Osteoporos Int 22:2175–2186

    CAS  PubMed  PubMed Central  Google Scholar 

  • Hough FS, Brown SL, Cassim B, Davey MR, de Lange W, de Villiers TJ, Ellis GC, Lipschitz S, Lukhele M, Pettifor JM, National Osteoporosis Foundation of South Africa (2014) The safety of osteoporosis medication. S Afr Med J 104:279–782

    CAS  PubMed  Google Scholar 

  • Hu JJ, Liu YW, He MY, Jin D, Zhao H, Yu B (2014) Proteomic analysis on effectors involved in BMP-2-induced osteogenic differentiation of beagle bone marrow mesenchymal stem cells. Proteome Sci 12:13

    CAS  PubMed  PubMed Central  Google Scholar 

  • Huang QY, Recker RR, Deng HW (2003) Searching for osteoporosis genes in the post-genome era: progress and challenges. Osteoporos Int 14:701–715

    PubMed  Google Scholar 

  • IOF report (2014) The global burden of osteoporosis: factsheet. International Osteoporosis Foundation Report: Factsheet. https://www.iofbonehealth.org/data-publications/fact-sheets/global-burden-osteoporosis. Accessed 1 Mar 2021

  • Itou T, Maldonado N, Yamada I, Goettsch C, Matsumoto J, Aikawa M, Singh S, Aikawa E (2014) Cystathionine γ-lyase accelerates osteoclast differentiation: identification of a novel regulator of osteoclastogenesis by proteomic analysis. Arterioscler Thromb Vasc Biol 34:626–634

    CAS  PubMed  Google Scholar 

  • Jiang X, Ye M, Jiang X, Liu G, Feng S, Cui L, Zou H (2007) Method development of efficient protein extraction in bone tissue for proteome analysis. J Proteome Res 6:2287–2294

    CAS  PubMed  Google Scholar 

  • Jones DC, Wein MN, Oukka M, Hofstaetter JG, Glimcher MJ, Glimcher LH (2006) Regulation of adult bone mass by the zinc finger adapter protein Schnurri-3. Science 312:1223–1227

    CAS  PubMed  Google Scholar 

  • Kanna B, Roffe E (2006) Prevention of hip fracture in elderly women with Alzheimer disease. Arch Intern Med 166:1144–1145

    PubMed  Google Scholar 

  • Khan TS, Fraser LA (2015) Type 1 diabetes and osteoporosis: from molecular pathways to bone phenotype. J Osteoporos. https://doi.org/10.1155/2015/174186

    Article  PubMed  PubMed Central  Google Scholar 

  • Kim BG, Lee JH, Ahn JM et al (2009) “Two-stage double-technique hybrid (TSDTH)” identification strategy for the analysis of BMP2-induced transdifferentiation of premyoblast C2C12 cells to osteoblast. J Proteome Res 8:4441–4454

    CAS  PubMed  Google Scholar 

  • Knezevic V, Leethanakul C, Bichsel VE, Worth JM, Prabhu VV, Gutkind JS, Liotta LA, Munson PJ, Petricoin EF 3rd, Krizman DB (2001) Proteomic profiling of the cancer microenvironment by antibody arrays. Proteomics 1:1271–1278

    CAS  PubMed  Google Scholar 

  • Koromani F, Trajanoska K, Rivadeneira F, Oei L (2019) Recent advances in the genetics of fractures in Osteoporosis. Front Endocrinol (lausanne) 10:337

    Google Scholar 

  • Kristensen M, Jensen M, Kudsk J, Henriksen M, Molgaard C (2005) Short-term effects on bone turnover of replacing milk with cola beverages: a 10-day interventional study in young men. Osteoporos Int 16:1803–1808

    CAS  PubMed  Google Scholar 

  • LePage DF, Conlon RA (2006) Animal models for disease: knockout, knock-in, and conditional mutant mice. Methods Mol Med 129:41–67

    CAS  PubMed  Google Scholar 

  • Leslie WD, Morin SN (2014) Osteoporosis epidemiology 2013: implications for diagnosis, risk assessment, and treatment. Curr Opin Rheumatol 26:440–446

    CAS  PubMed  Google Scholar 

  • Libuda L, Alexy U, Remer T, Stehle P, Schoenau E, Kersting M (2008) Association between long-term consumption of soft drinks and variables of bone modeling and remodeling in a sample of healthy German children and adolescents. Am J Clin Nutr 88:1670–1677

    CAS  PubMed  Google Scholar 

  • Ma D, Jones G (2004) Soft drink and milk consumption, physical activity, bone mass, and upper limb fractures in children: a population-based case–control study. Calcif Tissue Int 75:286–291

    CAS  PubMed  Google Scholar 

  • Madras N, Gibbs AL, Zhou Y et al (2002) Modeling stem cell development by retrospective analysis of gene expression profiles in single progenitor-derived colonies. Stem Cells 20:230–240

    CAS  PubMed  Google Scholar 

  • Maffioli E, Nonnis S, Angioni R, Santagata F, Calì B, Zanotti L, Negri A, Viola A, Tedeschi G (2017) Proteomic analysis of the secretome of human bone marrow-derived mesenchymal stem cells primed by pro-inflammatory cytokines. J Proteomics 166:115–126

    CAS  PubMed  Google Scholar 

  • Mahida YR, Wu K, Jewell DP (1989) Enhanced production of interleukin 1-beta by mononuclear cells isolated from mucosa with active ulcerative colitis of Crohn’s disease. Gut 30:835–838

    CAS  PubMed  PubMed Central  Google Scholar 

  • Maier T, Güell M, Serrano L (2009) Correlation of mRNA and protein in complex biological samples. FEBS Lett 583:3966–3973

    CAS  PubMed  Google Scholar 

  • Manolagas SC, Jilka RL (1995) Bone marrow, cytokines, and bone remodelling. Emerging insights into the pathophysiology of osteoporosis. N Engl J Med 332:305–311

    CAS  PubMed  Google Scholar 

  • Marshall D, Johnell O, Wedel H (1996) Meta-analysis of how well measures of bone mineral density predict occurrence of osteoporotic fractures. BMJ 312:1254–1259

    CAS  PubMed  PubMed Central  Google Scholar 

  • Martínez-Aguilar MM, Aparicio-Bautista DI, Ramírez-Salazar EG, Reyes-Grajeda JP, De la Cruz-Montoya AH, Antuna-Puente B, Hidalgo-Bravo A, Rivera-Paredez B, Ramírez-Palacios P, Quiterio M, Valdés-Flores M, Salmerón J, Velázquez-Cruz R (2019) Serum proteomic analysis reveals vitamin D-binding protein (VDBP) as a potential biomarker for low bone mineral density in Mexican postmenopausal women. Nutrients 11(12):E2853

    PubMed  Google Scholar 

  • McGartland C, Robson PJ, Murray L, Cran G, Savage MJ, Watkins D, Rooney M, Boreham C (2003) Carbonated soft drink consumption and bone mineral density in adolescence: the Northern Ireland Young Hearts project. J Bone Miner Res 18:1563–1569

    CAS  PubMed  Google Scholar 

  • Melton LJ 3rd, Beard CM, Kokmen E, Atkinson EJ, O’Fallon WM (1994) Fracture risk in patients with Alzheimer’s disease. J Am Geriatr Soc 42:614–619

    PubMed  Google Scholar 

  • Mirza F, Canalis E (2015) Secondary osteoporosis: pathophysiology and management. Eur J Endocrinol 173:R131–R151

    CAS  PubMed  PubMed Central  Google Scholar 

  • Niu CC, Lin SS, Yuan LJ, Chen LH, Pan TL, Yang CY, Lai PL, Chen WJ (2014) Identification of mesenchymal stem cells and osteogenic factors in bone marrow aspirate and peripheral blood for spinal fusion by flow cytometry and proteomic analysis. J Orthop Surg Res 9:32

    PubMed  PubMed Central  Google Scholar 

  • Ozaki K, Makino H, Aoki M, Miyake T, Yasumasa N, Osako MK, Nakagami H, Rakugi H, Morishita R (2012) Therapeutic effect of ribbon-type nuclear factor-κB decoy oligonucleotides in a rat model of inflammatory bowel disease. Curr Gene Ther 12:484–492

    CAS  PubMed  Google Scholar 

  • Paganelli M, Albanese C, Borrelli O, Civitelli F, Canitano N, Viola F, Passariello R, Cucchiara S (2007) Inflammation is the main determinant of low bone mineral density in pediatric inflammatory bowel disease. Inflamm Bowel Dis 13:416–423

    PubMed  Google Scholar 

  • Parsons LC (2005) Osteoporosis: incidence, prevention, and treatment of the silent killer. Nurs Clin North Am 40:119–133

    PubMed  Google Scholar 

  • Peacock M (2010) Calcium metabolism in health and disease. Clin J Am Soc Nephrol 5:S23–S30

    CAS  PubMed  Google Scholar 

  • Petricoin EF, Zoon KC, Kohn EC, Barrett JC, Liotta LA (2002) Clinical proteomics: translating benchside promise into bedside reality. Nat Rev Drug Discov 1:683–695

    CAS  PubMed  Google Scholar 

  • Ping L, Duong DM, Yin L, Gearing M, Lah JJ, Levey AI, Seyfried NT (2018) Global quantitative analysis of the human brain proteome in Alzheimer’s and Parkinson’s Disease. Sci Data 5:180036

    CAS  PubMed  PubMed Central  Google Scholar 

  • Raju R, Balakrishnan L, Nanjappa V, Bhattacharjee M, Getnet D, Muthusamy B, Kurian Thomas J, Sharma J, Rahiman BA, Harsha HC, Shankar S, Prasad TS, Mohan SS, Bader GD, Wani MR, Pandey A (2011) A comprehensive manually curated reaction map of RANKL/RANK-signaling pathway. Database (oxford) 2011:bar021

    Google Scholar 

  • Ralston SH, Uitterlinden AG (2010) Genetics of osteoporosis. Endocr Rev 31:629–662

    CAS  PubMed  Google Scholar 

  • Reginster J-Y, Burlet N (2006) Osteoporosis: a still increasing prevalence. Bone 38:S4–S9

    PubMed  Google Scholar 

  • Riggs BL (2000) The mechanisms of estrogen regulation of bone resorption. J Clin Investig 106:1203–1204

    CAS  PubMed  PubMed Central  Google Scholar 

  • Riggs BL, Jowsey J, Kelly PJ, Jones JD, Maher FT (1969) Effect of sex hormones on bone in primary osteoporosis. J Clin Invest 48:1065–1072

    CAS  PubMed  PubMed Central  Google Scholar 

  • Roux S, Mariette X (2004) The high rate of bone resorption in multiple myeloma is due to RANK (receptor activator of nuclear factor-kappaB) and RANK Ligand expression. Leuk Lymphoma 45(6):1111–1118

    CAS  PubMed  Google Scholar 

  • Rubin MR (2017) Skeletal fragility in diabetes. Ann NY Acad Sci 1402:18–30

    CAS  PubMed  Google Scholar 

  • Ryu J, Kim H, Chang EJ, Kim HJ, Lee Y, Kim HH (2010) Proteomic analysis of osteoclast lipid rafts: the role of the integrity of lipid rafts on V-ATPase activity in osteoclasts. J Bone Miner Metab 28:410–417

    CAS  PubMed  Google Scholar 

  • Saad FA (2012) Exploration for the molecular pathways that regulate bone matrix mineralization in the proteome era. Curr Topics Biochem Res 14:29–33

    CAS  Google Scholar 

  • Saad FA (2013) Searching for the Molecular Pathways Regulating Bone Mineral Density in the Proteome and RNA Interference Era. J Orthopedic Rheumatol 1:7–13

    Google Scholar 

  • Saad FA (2020) Novel insights into the complex architecture of osteoporosis molecular genetics. Ann NY Acad Sci 1462(1):37–52

    CAS  PubMed  Google Scholar 

  • Saad FA, Hofstätter JG (2011) Proteomic analysis of mineralizing osteoblasts identifies novel genes related to bone matrix mineralization. Int Orthop 35:447–451

    PubMed  Google Scholar 

  • Schreiweis MA, Butler JP, Kulkarni NH, Knierman MD, Higgs RE, Halladay DL, Onyia JE, Hale JE (2007) A proteomic analysis of adult rat bone reveals the presence of cartilage/chondrocyte markers. J Cell Biochem 101:466–476

    CAS  PubMed  Google Scholar 

  • Sealand R, Razavi C, Adler RA (2013) Diabetes mellitus and osteoporosis. Curr Diab Rep 13:411–418

    CAS  PubMed  Google Scholar 

  • Seeman E (2007) Is a change in bone mineral density a sensitive and specific surrogate of anti-fracture efficacy? Bone 41:308–317

    CAS  PubMed  Google Scholar 

  • Seibler J, Schwenk F (2010) Transgenic RNAi applications in the mouse. Methods Enzymol 477:367–386

    CAS  PubMed  Google Scholar 

  • Sellers TA, Yates JR (2003) Review of proteomics with applications to genetic epidemiology. Genet Epidemiol 24:83–98

    PubMed  Google Scholar 

  • Shapiro F, Cahill C, Malatantis G, Nayak RC (1995) Transmission electron microscopic demonstration of vimentin in rat osteoblast and osteocyte cell bodies and processes using the immunogold technique. Anat Rec 241:39–48

    CAS  PubMed  Google Scholar 

  • Sigurdsson G, Halldorsson BV, Styrkarsdottir U, Kristjansson K, Stefansson K (2008) Impact of genetics on low bone mass in adults. J Bone Miner Res 23:1584–1590

    PubMed  Google Scholar 

  • Stein GS, Lian JB, Stein JL, Van Wijnen AJ, Montecino M (1996) Transcriptional control of osteoblast growth and differentiation. Physiol Rev 76:593–629

    CAS  PubMed  Google Scholar 

  • St-Jacques B, Hammerschmidt M, McMahon AP (1999) Indian hedgehog signaling regulates proliferation and differentiation of chondrocytes and is essential for bone formation. Genes Dev 13:2072–2086

    CAS  PubMed  PubMed Central  Google Scholar 

  • Szabo E, Qiu Y, Baksh S, Michalak M, Opas M (2008) Calreticulin inhibits commitment to adipocyte differentiation. J Cell Biol 182:103–116

    CAS  PubMed  PubMed Central  Google Scholar 

  • Szamatowicz M (2016) How can gynaecologists cope with the silent killer—Osteoporosis? Prz Menopauzalny 15:189–192

    PubMed  Google Scholar 

  • Tsai TWT, Chan JCC (2011) Recent progress in solidstate NMR studies of biomineralization. Ann Rep NMR Spectrosc 73:1–61

    CAS  Google Scholar 

  • Weaver CM, Gordon CM, Janz KF, Kalkwarf HJ, Lappe JM, Lewis R, O’Karma M, Wallace TC, Zemel BS (2016) The National Osteoporosis Foundation’s position statement on peak bone mass development and lifestyle factors: a systematic review and implementation recommendations. Osteoporos Int 27:1281–1386

    CAS  PubMed  PubMed Central  Google Scholar 

  • Woodman I (2013) Osteoporosis: linking osteoporosis with Alzheimer disease. Nat Rev Rheumatol 9:638

    PubMed  Google Scholar 

  • Yang X, Matsuda K, Bialek P, Jacquot S, Masuoka HC, Schinke T, Li L, Brancorsini S, Sassone-Corsi P, Townes TM, Hanauer A, Karsenty G (2004) ATF4 is a substrate of RSK2 and an essential regulator of osteoblast biology; implication for Coffin-Lowry Syndrome. Cell 117:387–398

    CAS  PubMed  Google Scholar 

  • Yao B, Zhang M, Leng X, Zhao D (2019) Proteomic analysis of the effects of antler extract on chondrocyte proliferation, differentiation and apoptosis. Mol Biol Rep 46:1635–1648

    CAS  PubMed  Google Scholar 

  • Yeung ES (2011) Genome-wide correlation between mRNA and protein in a single cell. Angew Chem Int Ed Engl 50:583–585

    CAS  PubMed  Google Scholar 

  • Yu E, Sharma S (2020) Physiology, calcium. In: StatPearls. StatPearls Publishing, Treasure Island

    Google Scholar 

  • Yu CJ, Ko CJ, Hsieh CH et al (2014) Proteomic analysis of osteoarthritic chondrocyte reveals the hyaluronic acid-regulated proteins involved in chondroprotective effect under oxidative stress. J Proteomics 99:40–53

    CAS  PubMed  Google Scholar 

  • Zhang AX, Yu WH, Ma BF, Yu XB, Mao FF, Liu W, Zhang JQ, Zhang XM, Li SN, Li MT, Lahn BT, Xiang AP (2007) Proteomic identification of differently expressed proteins responsible for osteoblast differentiation from human mesenchymal stem cells. Mol Cell Biochem 304:167–179

    CAS  PubMed  Google Scholar 

  • Zhang H, Zhang L, Wang J, Ma Y, Zhang J, Mo F, Zhang W, Yan S, Yang G, Lin B (2009) Proteomic analysis of bone tissues of patients with osteonecrosis of the femoral head. OMICS 13:453–466

    CAS  PubMed  Google Scholar 

  • Zhang J, Dennison E, Prieto-Alhambra D (2020) Osteoporosis epidemiology using international cohorts. Curr Opin Rheumatol 32(4):387–393

    PubMed  Google Scholar 

Download references

Acknowledgements

The author would like to thank Ashley and Jessy Saad for reading the manuscript. The author was a beneficiary of an NIH National Research Service Award.

Funding

The author was a beneficiary of an NIH National Research Service Award.

Author information

Authors and Affiliations

Authors

Contributions

This is a single author manuscript.

Corresponding author

Correspondence to Fawzy Ali Saad.

Ethics declarations

Conflict of interest

The author declares no conflict of interest.

Ethics approval

There were no patients enrolled for this study.

Consent to participate

There were no patients enrolled for this study.

Consent for publication

This is a single author manuscript.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Saad, F.A. Proteomics: an emerging tool for the discovery of bone mineral density molecular pathways. J Proteins Proteom 12, 247–256 (2021). https://doi.org/10.1007/s42485-021-00071-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s42485-021-00071-0

Keywords

Navigation