Skip to main content

Advertisement

Log in

Rare Earth Element Deposits and Their Prospects in the Democratic Republic of Congo

  • Review
  • Published:
Mining, Metallurgy & Exploration Aims and scope Submit manuscript

Abstract

Rare earth elements (REEs) are a group of seventeen elements comprising fifteen lanthanides, scandium, and yttrium. They are not necessarily rare, though their occurrences as economic deposits in host rocks are not very common. They are enriched in carbonatites, alkaline, and peralkaline igneous rocks; mineralized pegmatites; and their respective placers and derived laterites, while other sources include hydrothermal veins, bauxites, and ion adsorption clays. REEs are used in high-tech and green technology devices, notably batteries, computer memories, permanent magnets, electric vehicles, smartphones, solar panels, wind turbines, speakers, and air conditioners, among others. The Democratic Republic of Congo (DRC) is endowed with mineral resources. The occurrences of REE in carbonatite complexes around Lueshe, Bingo, and Kirumba have been reported. Other regions with REE potential include the pegmatite dykes in several locations, including Numbi, Manono-Kitotolo, Kampene, North Lugulu, and Kobokobo. Intensive weathering conditions, which facilitate lateritization processes, may enable REE enrichments in the lateritic profiles and placers associated with these carbonatites, mineralized pegmatites, and peralkaline igneous massifs. The alluvial placers of Kabengelwa, Mashabuto, and Obaye that are enriched in monazite and rare earth minerals are typical examples of placer deposits. With more research and exploration, the DRC could be a hub for future REE projects.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Connelly NG, Damhus T, Hartshorn RM et Hutton AT (2005) Nomenclature of Inorganic Chemistry IUPAC Recommendations 2005, Royal Society of Chemistry Publishing/IUPAC Cambridge, U.K

  2. Voncken JHL (2016) The rare earth elements: an introduction. Springer Briefs in Earth Sciences, Switzerland. https://doi.org/10.1007/978-3-319-26809-5

  3. Balaram V (2019) Rare earth elements: A review of applications, occurrence, exploration, analysis, recycling, and environmental impact. Geosci Front 10:1285–1303. https://doi.org/10.1016/j.gsf.2018.12.005

    Article  Google Scholar 

  4. Dushyantha N, Batapola N, Ilankoon IMSK et al (2020) The story of rare earth elements (REEs): Occurrences, global distribution, genesis, geology, mineralogy and global production. Ore Geol Rev 122:103521. https://doi.org/10.1016/j.oregeorev.2020.103521

    Article  Google Scholar 

  5. Wall F (2014) Rare Earth Elements. In: Gunn AG (ed) Critical metals handbook. Wiley-Blackwell, London, pp 312–339

    Google Scholar 

  6. Hoshino M, Sanematsu K, Watanabe Y (2016) REE Mineralogy and Resources, 1st ed. Elsevier B. https://doi.org/10.1016/bs.hpcre.2016.03.006

  7. Harmer RE, Nex PAM (2016) Rare earth deposits of Africa. Episodes 39:381–406. https://doi.org/10.18814/epiiugs/2016/v39i2/95784

  8. Kanazawa Y, Kamitani M (2006) Rare earth minerals and resources in the world. J Alloys Compd 408–412:1339–1343. https://doi.org/10.1016/j.jallcom.2005.04.033

    Article  Google Scholar 

  9. Verplanck PL, Mariano AN, Mariano A (2016) Rare earth element ore geology of carbonatites. In: Verplanck P, Hitzman M (eds) Rare earth and critical elements in ore deposits. Society of Economic Geologists, Littleton, Colorado, pp 5–32

    Chapter  Google Scholar 

  10. Achary SN, Bevara S, Tyagi AK (2017) Recent progress on synthesis and structural aspects of rare-earth phosphates. Coord Chem Rev 340:266–297. https://doi.org/10.1016/j.ccr.2017.03.006

    Article  Google Scholar 

  11. Golev A, Scott M, Erskine PD et al (2014) Rare earths supply chains: Current status, constraints and opportunities. Resour Policy 41:52–59. https://doi.org/10.1016/j.resourpol.2014.03.004

    Article  Google Scholar 

  12. Charles N, Tuduri J, Lefebvre G, et al (2021) Ressources en terres rares de l’Europe et du Groenland : un potentiel minier remarquable mais tabou ? In: Boulvais P, Decrée S (eds) Ressources métalliques : cadre géodynamique et exemples remarquables. ISTE Science Publishing Ltd-Wiley

  13. Sanematsu K, Kon Y, Imai A et al (2013) Geochemical and mineralogical characteristics of ion-adsorption type REE mineralization in Phuket, Thailand. Miner Depos 48:437–451. https://doi.org/10.1007/s00126-011-0380-5

    Article  Google Scholar 

  14. Vereschagin YA, Kudrevatykh NV, Malygin MA, Emelina TN (2006) Rare-Earth Magnets in Russia: Raw Materials, Processing, Properties Control and Output Issues. J Iron Steel Res Int 13:23–32. https://doi.org/10.1016/S1006-706X(08)60157-0

    Article  Google Scholar 

  15. Atanasova P, Krause J, Gutzmer J (2013) Mineralogical characterization of REE mineralization in Norra Kärr alkaline complex, Sweden. the 12th SGA Biannial Meeting 12–15 August, 2013. Upsala, Sweden, pp 298–301

    Google Scholar 

  16. Kogarko LN (2020) Geochemistry of Rare Earth Metals in the Ore Eudialyte Complex of the Lovozero Rare Earth Deposit. Dokl Earth Sci 491:231–234. https://doi.org/10.1134/S1028334X2004008X

    Article  Google Scholar 

  17. Yang XJ, Lin A, Li XL et al (2013) China’s ion-adsorption rare earth resources, mining consequences and preservation. Environ Dev 8:131–136. https://doi.org/10.1016/j.envdev.2013.03.006

    Article  Google Scholar 

  18. Broom-Fendley S, Brady AE, Wall F et al (2017) REE minerals at the Songwe Hill carbonatite, Malawi: HREE-enrichment in late-stage apatite. Ore Geol Rev 81:23–41. https://doi.org/10.1016/j.oregeorev.2016.10.019

    Article  Google Scholar 

  19. Wall F, Niku-Paavola VN, Storey C et al (2008) Xenotime-(Y) from carbonatite dykes at Lofdal, Namibia: Unusually low LREE:HREE ratio in carbonatite, and the first dating of xenotime overgrowths on zircon. Can Mineral 46:861–877. https://doi.org/10.3749/canmin.46.4.861

    Article  Google Scholar 

  20. Schulz K, Seal R, Bradley D, Deyoung J (2017) Critical mineral resources of the United States—Economic and environmental geology and prospects for future supply. Prof Pap. https://doi.org/10.3133/pp1802

    Article  Google Scholar 

  21. Goodenough KM, Wall F, Merriman D (2018) The Rare Earth Elements: Demand, Global Resources, and Challenges for Resourcing Future Generations. Nat Resour Res 27:201–216. https://doi.org/10.1007/s11053-017-9336-5

    Article  Google Scholar 

  22. Xie Y, Hou Z, Goldfarb RJ et al (2016) Rare earth element deposits in China. In: Verplanck PL, Hitzman MW (eds) Reviews in Economic Geology. Society of Economic Geologists, Littleton, Colorado, pp 115–136

    Google Scholar 

  23. Shen Y, Moomy R, Eggert RG (2020) China’s public policies toward rare earths, 1975–2018. Miner Econ 33:127–151. https://doi.org/10.1007/s13563-019-00214-2

    Article  Google Scholar 

  24. Mancheri NA, Sprecher B, Bailey G et al (2019) Effect of Chinese policies on rare earth supply chain resilience. Resour Conserv Recycl 142:101–112. https://doi.org/10.1016/j.resconrec.2018.11.017

    Article  Google Scholar 

  25. Habib K, Wenzel H (2014) Exploring rare earths supply constraints for the emerging clean energy technologies and the role of recycling. J Clean Prod 84:348–359. https://doi.org/10.1016/j.jclepro.2014.04.035

    Article  Google Scholar 

  26. Dutta T, Kim KH, Uchimiya M et al (2016) Global demand for rare earth resources and strategies for green mining. Environ Res 150:182–190

    Article  Google Scholar 

  27. Smith MP, Campbell LS, Kynicky J (2015) A review of the genesis of the world class Bayan Obo Fe-REE-Nb deposits, Inner Mongolia, China: Multistage processes and outstanding questions. Ore Geol Rev 64:459–476. https://doi.org/10.1016/j.oregeorev.2014.03.007

    Article  Google Scholar 

  28. Goodenough KM, Wall F, Estrade G (2016) Potential rare earth element metallogenetic belts in Africa. Abstr 35th Int Geol Congr 2–4

  29. Buyse F, Dewaele S, Decrée S, Mees F (2020) Mineralogical and geochemical study of the rare earth element mineralization at Gakara (Burundi). Ore Geol Rev 124:103659. https://doi.org/10.1016/j.oregeorev.2020.103659

    Article  Google Scholar 

  30. Le Maitre RW (2002) Igneous Rocks: a classification and glossary of terms: recommendations of the International Union of Geological Sciences. Cambridge University Press, Cambridge, Subcommission on the Systematics of Igneous Rocks

    Google Scholar 

  31. Simandl GJ, Paradis S (2018) Carbonatites: related ore deposits, resources, footprint, and exploration methods. Appl Earth Sci Trans Inst Min Metall 127:123–152. https://doi.org/10.1080/25726838.2018.1516935

    Article  Google Scholar 

  32. Walter BF, Steele-MacInnis M, Giebel RJ et al (2020) Complex carbonate-sulfate brines in fluid inclusions from carbonatites: Estimating compositions in the system H2O-Na-K-CO3-SO4-Cl. Geochim Cosmochim Acta 277:224–242. https://doi.org/10.1016/j.gca.2020.03.030

    Article  Google Scholar 

  33. Walter BF, Giebel RJ, Steele-MacInnis M et al (2021) Fluids associated with carbonatitic magmatism: A critical review and implications for carbonatite magma ascent. Earth-Science Rev 215:103509. https://doi.org/10.1016/j.earscirev.2021.103509

    Article  Google Scholar 

  34. Vladykin NV, Pirajno F (2021) Types of carbonatites: geochemistry, genesis and mantle sources. Lithos 386–387:105982. https://doi.org/10.1016/j.lithos.2021.105982

  35. Banks GJ, Walter BF, Marks MAW, Siegfried PR (2019) A workflow to define, map and name A carbonatite-or alkaline igneous-associated REE-HFSE mineral system: A case study from SW germany Minerals 9. https://doi.org/10.3390/min9020097

  36. Anenburg M, Mavrogenes JA, Frigo C, Wall F (2020) Rare earth element mobility in and around carbonatites controlled by sodium, potassium, and silica. Sci Adv 6. https://doi.org/10.1126/sciadv.abb6570

  37. Wang ZY, Fan HR, Zhou L et al (2020) Carbonatite-related REE deposits: An overview Minerals 10:1–26. https://doi.org/10.3390/min10110965

    Article  Google Scholar 

  38. González-Álvarez I, Stoppa F, Yang XY, Porwal A (2021) Introduction to the special Issue, insights on carbonatites and their mineral exploration approach: A challenge towards resourcing critical metals. Ore Geol Rev 133:104073. https://doi.org/10.1016/j.oregeorev.2021.104073

    Article  Google Scholar 

  39. Yang Z, Woolley A (2006) Carbonatites in China: A review. J Asian Earth Sci 27:559–575. https://doi.org/10.1016/j.jseaes.2005.06.009

    Article  Google Scholar 

  40. Deady EA (2021) Global rare earth element (REE) mines , deposits and occurrences (May 2021). Br. Geol. Surv. 1

  41. Batapola NM, Dushyantha NP, Premasiri HMR et al (2020) A comparison of global rare earth element (REE) resources and their mineralogy with REE prospects in Sri Lanka. J Asian Earth Sci 200:104475. https://doi.org/10.1016/j.jseaes.2020.104475

    Article  Google Scholar 

  42. Smith MP, Moore K, Kavecsánszki D et al (2016) From mantle to critical zone: A review of large and giant sized deposits of the rare earth elements. Geosci Front 7:315–334. https://doi.org/10.1016/j.gsf.2015.12.006

    Article  Google Scholar 

  43. Dostal J (2017) Rare earth element deposits of alkaline igneous rocks. Resources 6. https://doi.org/10.3390/resources6030034

  44. Borst AM, Friis H, Andersen T et al (2016) Zirconosilicates in the kakortokites of the Ilímaussaq complex, South Greenland: Implications for fluid evolution and high-field-strength and rare-earth element mineralization in agpaitic systems. Mineral Mag 80:5–30. https://doi.org/10.1180/minmag.2016.080.046

    Article  Google Scholar 

  45. Goodenough KM, Schilling J, Jonsson E et al (2016) Europe’s rare earth element resource potential: An overview of REE metallogenetic provinces and their geodynamic setting. Ore Geol Rev 72:838–856. https://doi.org/10.1016/j.oregeorev.2015.09.019

  46. Jowitt SM, Medlin CC, Cas RAF (2017) The rare earth element (REE) mineralisation potential of highly fractionated rhyolites: A potential low-grade, bulk tonnage source of critical metals. Ore Geol Rev 86:548–562. https://doi.org/10.1016/j.oregeorev.2017.02.027

    Article  Google Scholar 

  47. Groves DI, Bierlein FP, Meinert LD, Hitzman MW (2010) Iron oxide copper-gold (IOCG) deposits through earth histoiy: Implications for origin, lithospheric setting, and distinction from other epigenetic iron oxide deposits. Econ Geol 105:641–654. https://doi.org/10.2113/gsecongeo.105.3.641

    Article  Google Scholar 

  48. Williams P, Barton M, Johnson D et al (2005) Iron oxide copper-gold deposits: geology, space-time distribution, and possible modes of origin. In: Hedenquist JW, Thompson JFH, Goldfarb RJ, Richards JP (eds) Economic Geology. Society of Economic Geologists, Littelton, Colorado, USA, pp 371–405

    Google Scholar 

  49. Frietsch R, Perdahl JA (1995) Rare earth elements in apatite and magnetite in Kiruna-type iron ores and some other iron ore types. Ore Geol Rev 9:489–510. https://doi.org/10.1016/0169-1368(94)00015-G

    Article  Google Scholar 

  50. Holtstam D, Andersson UB, Broman C, Mansfeld J (2014) Origin of REE mineralization in the Bastnäs-type Fe-REE-(Cu-Mo-Bi-Au) deposits, Bergslagen, Sweden. Miner Depos 49:933–966. https://doi.org/10.1007/s00126-014-0553-0

    Article  Google Scholar 

  51. Decrée S, Boulvais P, Cobert C et al (2015) Structurally-controlled hydrothermal alteration in the syntectonic Neoproterozoic Upper Ruvubu Alkaline Plutonic Complex (Burundi): Implications for REE and HFSE mobilities. Precambrian Res 269:281–295. https://doi.org/10.1016/j.precamres.2015.08.016

    Article  Google Scholar 

  52. Nasraoui M, Toulkeridis T, Clauer N, Bilal E (2000) Differentiated hydrothermal and meteoric alterations of the Lueshe carbonatite complex (Democratic Republic of Congo) identified by a REE study combined with a sequential acid-leaching experiment. Chem Geol 165:109–132. https://doi.org/10.1016/S0009-2541(99)00165-5

    Article  Google Scholar 

  53. Wall F, Williams CT, Woolley AR, Nasraoui M (1996) Pyrochlore from Weathered Carbonatite at Lueshe, Zaire. Mineral Mag 60:731–750. https://doi.org/10.1180/minmag.1996.060.402.03

    Article  Google Scholar 

  54. Kasay GM, Bolarinwa AT, Aromolaran OK et al (2021) A review of the geological settings, ages and economic potentials of carbonatites in the Democratic Republic of Congo. Appl Earth Sci Trans Inst Min Metall 130:143–160. https://doi.org/10.1080/25726838.2021.1911585

    Article  Google Scholar 

  55. Barber B (1991) Phosphate resources of carbonatites in Zimbabwe. Fertil Res 30:247–278. https://doi.org/10.1007/BF01048661

    Article  Google Scholar 

  56. Jaireth S, Hoatson DM, Miezitis Y (2014) Geological setting and resources of the major rare-earth-element deposits in Australia. Ore Geol Rev 62:72–128. https://doi.org/10.1016/j.oregeorev.2014.02.008

    Article  Google Scholar 

  57. Takehara L, Silveira F, Santos R (2015) Potentiality of rare earth elements in Brazil. In: De Lima IB, Filho WL (eds) Rare Earths Industry: Technological, Economic, and Environmental Implications, 1st ed. Elsevier Inc., pp 57–72. https://doi.org/10.1016/B978-0-12-802328-0.00004-8

  58. Berger A, Janots E, Gnos E et al (2014) Rare earth element mineralogy and geochemistry in a laterite profile from Madagascar. Appl Geochemistry 41:218–228. https://doi.org/10.1016/j.apgeochem.2013.12.013

    Article  Google Scholar 

  59. Sengupta D, Van GBS (2016) Placer-Type Rare Earth Element Deposits. In: Verplanck P, Hitzman M (eds) Rare Earth and Critical Elements in Ore Deposits. Society of Economic Geologists, Littleton, Colorado, pp 81–100. https://doi.org/10.5382/Rev.18.04

  60. Dill HG, Weber B, Klosa D (2012) Morphology and mineral chemistry of monazite-zircon-bearing stream sediments of continental placer deposits (SE Germany): Ore guide and provenance marker. J Geochemical Explor 112:322–346. https://doi.org/10.1016/j.gexplo.2011.10.006

    Article  Google Scholar 

  61. Hoatson DM, Jaireth S, Miezitis Y (2011) The Major Rare-earth-element Deposits of Australia: Geological Setting, Exploration, and Resources. Geoscience Australia

  62. Singh Y (2020) Rare Earth Element Resources: Indian Contex. Springer, Cham. https://doi.org/10.1007/978-3-030-41353-8

  63. Weng ZH, Jowitt SM, Mudd GM, Haque N (2014) Assessing rare earth element mineral deposit types and links to environmental impacts. Trans Institutions Min Metall Sect B Appl Earth Sci 122:83–96. https://doi.org/10.1179/1743275813Y.0000000036

    Article  Google Scholar 

  64. Wang Q, Deng J, Liu X et al (2010) Discovery of the REE minerals and its geological significance in the Quyang bauxite deposit, West Guangxi, China. J Asian Earth Sci 39:701–712. https://doi.org/10.1016/j.jseaes.2010.05.005

    Article  Google Scholar 

  65. Deady ÉA, Mouchos E, Goodenough K et al (2016) A review of the potential for rare-earth element resources from European red muds: examples from Seydişehir, Turkey and Parnassus-Giona, Greece. Mineral Mag 80:43–61. https://doi.org/10.1180/minmag.2016.080.052

    Article  Google Scholar 

  66. Bao Z, Zhao Z (2008) Geochemistry of mineralization with exchangeable REY in the weathering crusts of granitic rocks in South China. Ore Geol Rev 33:519–535. https://doi.org/10.1016/j.oregeorev.2007.03.005

    Article  Google Scholar 

  67. Xu C, Kynický J, Smith MP et al (2017) Origin of heavy rare earth mineralization in South China. Nat Commun 8:1–7. https://doi.org/10.1038/ncomms14598

    Article  Google Scholar 

  68. Sanematsu K, Watanabe Y (2016) Characteristics and Genesis of Ion Adsorption-Type Rare Earth Element Deposits. In: Verplanck P, Hitzman M (eds) Reviews in Economic Geology. Society of Economic Geologists, Littleton, Colorado, pp 55–79

    Google Scholar 

  69. Estrade G, Marquis E, Smith M et al (2019) REE concentration processes in ion adsorption deposits: Evidence from the Ambohimirahavavy alkaline complex in Madagascar. Ore Geol Rev 112:103027. https://doi.org/10.1016/j.oregeorev.2019.103027

    Article  Google Scholar 

  70. Borst AM, Smith MP, Finch AA et al (2020) Adsorption of rare earth elements in regolith-hosted clay deposits. Nat Commun 11:1–15. https://doi.org/10.1038/s41467-020-17801-5

    Article  Google Scholar 

  71. Zhou B, Li Z, Chen C (2017) Global potential of rare earth resources and rare earth demand from clean technologies. Minerals 7:203. https://doi.org/10.3390/min7110203

    Article  Google Scholar 

  72. Spandler C, Slezak P, Nazari-Dehkordi T (2020) Tectonic significance of Australian rare earth element deposits. Earth-Science Rev 207:103219. https://doi.org/10.1016/j.earscirev.2020.103219

    Article  Google Scholar 

  73. United States Geological Survey (USGS) (2021) Mineral Commodity Summaries 2020 - Rare earths. Gov. Print. Off. Washington, DC

  74. Dill HG (2015) Pegmatites and aplites: Their genetic and applied ore geology. Ore Geol Rev 69:417–561. https://doi.org/10.1016/j.oregeorev.2015.02.022

    Article  Google Scholar 

  75. Benaouda R, Kraemer D, Sitnikova M et al (2020) Discovery of high-grade REE-Nb-Fe mineralization associated with calciocarbonatite in south Morocco. Ore Geol Rev 124:103631. https://doi.org/10.1016/j.oregeorev.2020.103631

    Article  Google Scholar 

  76. Wall F, Mariano AN (1996) Rare earth minerals in carbonatites: a discussion centred on the Kangankunde Carbonatite, Malawi. In: Jones AP, Wall F, Williams CT (eds) Rare Earth Minerals: Chemistry, Origin and Ore Deposits. Chapman and Hall, London, pp 193–225

    Google Scholar 

  77. Dill HG (2007) A review of mineral resources in Malawi: With special reference to aluminium variation in mineral deposits. J African Earth Sci 47:153–173. https://doi.org/10.1016/j.jafrearsci.2006.12.006

    Article  Google Scholar 

  78. Appleton JD, Bland DJ, Nancarrow PH et al (1992) The occurrence of daqingshanite-(Ce) in the Nkombwa Hill carbonatite, Zambia. Mineral Mag 56:419–422. https://doi.org/10.1180/minmag.1992.056.384.16

    Article  Google Scholar 

  79. Witt WK, Hammond DP, Hughes M (2018) Geology of the Ngualla carbonatite complex, Tanzania, and origin of the Weathered Bastnaesite Zone REE ore. Ore Geol Rev 105:28–54. https://doi.org/10.1016/j.oregeorev.2018.12.002

    Article  Google Scholar 

  80. Patel JP, Mangala MJ (1994) Elemental analysis of carbonatite samples from Mrima Hill, Kenya, by energy dispersive x-ray fluorescence (EDXRF). Nucl Geophys 8:389–393

    Google Scholar 

  81. Deblond A (2004) Updated Geological Framework of Central Africa. GEONET Scientific case study n°7

  82. Kadima E, Delvaux D, Sebagenzi SN et al (2011) Structure and geological history of the Congo Basin: An integrated interpretation of gravity, magnetic and reflection seismic data. Basin Res 23:499–527. https://doi.org/10.1111/j.1365-2117.2011.00500.x

    Article  Google Scholar 

  83. Schlüter T (2006) Geological Atlas of Africa With Notes on Stratigraphy, Tectonics, Economic Geology, Geohazards and Geosites of Each Country. Springer-Verlag Berlin Heidelberg, Berlin Heidelberg

  84. Tack L, De Paepe P, Deutsch S, Liégeois J-P (1984) The alkaline plutonic complex of the Upper Ruvubu (Burundi): geology, age, isotopic gechemistry and implications for the regional geology of the Western Rift. In: Klerkx J, Michot J (eds) African Geology. pp 91–114

  85. MRAC (2005) Carte Geologique de la Republque Democratique du Congo, Echelle : 1:2500000. MUSÉE R. L’AFRIQUE Cent. 1

  86. Allibone A, Vargas C, Mwandale E, et al (2021) Chapter 9: Orogenic Gold Deposits of the Kibali District, Neoarchean Moto Belt, Northeastern Democratic Republic of Congo. In: Sillitoe RH, Goldfarb RJ, Robert F, Simmons SF (eds) Geology of the World’s Major Gold Deposits and Provinces. Society of Economic Geologists, pp 185–201. https://doi.org/10.5382/SP.23.09

  87. De Putter T, Liégeois JP, Dewaele S et al (2018) Paleoproterozoic manganese and base metals deposits at Kisenge-Kamata (Katanga, D.R. Congo). Ore Geol Rev 96:181–200. https://doi.org/10.1016/j.oregeorev.2018.04.015

    Article  Google Scholar 

  88. Dewaele S, De Clercq F, Muchez P et al (2010) Geology of the cassiterite mineralisation in the Rutongo area, Rwanda (Central Africa): Current state of knowledge. Geol Belgica 13:91–112

    Google Scholar 

  89. Kokonyangi JW, Kampunzu AB, Armstrong R et al (2006) The Mesoproterozoic Kibaride belt (Katanga, SE D.R. Congo). J African Earth Sci 46:1–35. https://doi.org/10.1016/j.jafrearsci.2006.01.017

    Article  Google Scholar 

  90. Kokonyangi J, Kampunzu AB, Poujol M et al (2005) Petrology and geochronology of Mesoproterozoic mafic-intermediate plutonic rocks from Mitwaba (D. R. Congo): Implications for the evolution of the Kibaran belt in central Africa. Geol Mag 142:109–130. https://doi.org/10.1017/S0016756804009951

    Article  Google Scholar 

  91. Dewaele S, Henjes-Kunst F, Melcher F et al (2011) Late Neoproterozoic overprinting of the cassiterite and columbite-tantalite bearing pegmatites of the Gatumba area, Rwanda (Central Africa). J African Earth Sci 61:10–26. https://doi.org/10.1016/j.jafrearsci.2011.04.004

    Article  Google Scholar 

  92. Melcher F, Graupner T, Oberthur T, Schutte P (2017) Tantalum-(niobium-tin) mineralisation in pegmatites. South African J Geol 120:77–100. https://doi.org/10.25131/gssajg.120.1.77

    Article  Google Scholar 

  93. Lubala RT, Kampunzu AB, Makutu MN (1985) Un inventaire des complexes anorogeniques du Burundi, du Ruanda et du Zaire. J African Earth Sci 3:169–174

    Google Scholar 

  94. Kampunzu AB, Makutu MN, Rocci G et al (1997) Neoproterozoic Alkaline and Carbonatite Magmatism Along the Western Rift in Central-Eastern Africa: Break-up of Rodinia Supercontinent and Reconstruction of Gondwana. Gondwana Res 1:155–156. https://doi.org/10.1016/s1342-937x(05)70020-4

    Article  Google Scholar 

  95. Decrée S, Demaiffe D, Tack L et al (2019) The Neoproterozoic Upper Ruvubu alkaline plutonic complex (Burundi) revisited: Large-scale syntectonic emplacement, magmatic differentiation and late-stage circulations of fluids. Precambrian Res 325:150–171. https://doi.org/10.1016/j.precamres.2019.02.023

    Article  Google Scholar 

  96. Gupta CK, Krishnamurthy N (1992) Extractive metallurgy of rare earth. Int Mater Rev 37:197–248. https://doi.org/10.1179/imr.1992.37.1.197

  97. Morgan GA, Connor K, Kornhauser BA (1985) Zaire. U.S. Department of the Interior, Bureau of Mines

  98. Woolley AR, Williams CT, Wall F et al (1995) The Bingo carbonatite-ijolite-nepheline syenite complex, Zaire: geology, petrography, mineralogy and petrochemistry. J African Earth Sci 21:329–348. https://doi.org/10.1016/0899-5362(95)00093-9

    Article  Google Scholar 

  99. Williams CT, Wall F, Woolley AR, Phillipo S (1997) Compositional variation in pyrochlore from the Bingo carbonatite, Zaire. J African Earth Sci 25:137–145. https://doi.org/10.1016/S0899-5362(97)00066-3

    Article  Google Scholar 

  100. Carlotta B, Chernoff, Orris GJ (2002) Data Set of World Phosphate Mines, Deposits, and Occurrences — Part A. Geologic Data. Usgs 1–352

  101. Kasay GM (2018) Geology, Geochemistry and Economic potential of the Bingo carbonatite and its associated laterites in Beni, North Kivu, Democratic Republic of Congo (DRC). University of Nairobi

  102. Van Wambeke L (1971) Pandaïte, baddeleyite and associated minerals from the Bingo niobium deposit, Kivu, Democratic Republic of Congo. Miner Depos 6:153–155. https://doi.org/10.1007/BF00206627

    Article  Google Scholar 

  103. Berger VI, Singer DA, Orris GJ (2009) Carbonatites of the World, Explored Deposits of Nb and REE-Database and Grade and Tonnage Models. US Geol Surv Open File Rep 2009–1139:76–92

    Google Scholar 

  104. Maravic HV, Morteani G (1980) Petrology and geochemistry of the carbonatite and syenite complex of Lueshe (N.E. Zaire). Lithos 13:159–170. https://doi.org/10.1016/0024-4937(80)90017-1

    Article  Google Scholar 

  105. Maravic HV, Morteani G, Roethe G (1989) The cancrinite-syenite/carbonatite complex of Lueshe, Kivu/NE-Zaire: petrographic and geochemical studies and its economic significance. J African Earth Sci 9:341–345. https://doi.org/10.1016/0899-5362(89)90077-8

    Article  Google Scholar 

  106. Nasraoui M, Bilal E (2000) Pyrochlores from the Lueshe carbonatite complex (Democratic Republic of Congo): A geochemical record of different alteration stages. J Asian Earth Sci 18:237–251. https://doi.org/10.1016/S1367-9120(99)00056-5

    Article  Google Scholar 

  107. Midende G, Boulvais P, Tack L et al (2014) Petrography, geochemistry and U-Pb zircon age of the Matongo carbonatite Massif (Burundi): Implication for the Neoproterozoic geodynamic evolution of Central Africa. J African Earth Sci 100:656–674. https://doi.org/10.1016/j.jafrearsci.2014.08.010

    Article  Google Scholar 

  108. Keller J, Zaitsev AN (2012) Geochemistry and petrogenetic significance of natrocarbonatites at Oldoinyo Lengai, Tanzania: Composition of lavas from 1988 to 2007. Lithos 148:45–53. https://doi.org/10.1016/j.lithos.2012.05.022

    Article  Google Scholar 

  109. Woolley AR, Kempe D (1989) Carbonatites: nomenclature, average chemical compositions, and element distribution. In: Bell K (ed) Carbonatites: genesis and evolution. Unwin Hyman, London, pp 1–13

    Google Scholar 

  110. McDonough WF, Sun S (1995) The composition of the Earth. Chem Geol 120:223–253. https://doi.org/10.1016/0009-2541(94)00140-4

    Article  Google Scholar 

  111. Philippo S (1995) Evaluation minéralogique par diffraction des rayons-X qualitative et quantitative des gisements latéritiques de niobium de la Lueshe et de Bingo dans le cadre de l’optimisation de la récupération du pyrochlore. Université Catholique de Louvain

  112. Denaeyer ME (1958) Les syénites feldspathoïdiques du Kivu et leur rôle dans la genèse des laves des Virunga. Bull la Société Belge Géologie Paléontologie d’Hydrologie 67:59–87

    Google Scholar 

  113. Denaeyer ME (1966) Sur la présence d’une carbonatite ankéritique (rauhaugite) en bordure du complexe alcalin de Kirumba (Kivu). Comptes Rendus Hebd des Séances l’Académie des Sci Série D Sci Nat 263:9–12

    Google Scholar 

  114. Makutu MN (1990) Les complexes alcalins sous – saturés et carbonatitiques d’âge Prot6rozoique supérieur dans la région des Grands Lacs Africains : structure, géochimie, pétrologie, aspect métallogénique et implications géodynamiques. Université de Lubumbashi

  115. Černý P (1992) Geochemical and petrogenetic features of mineralization in rare-element granitic pegmatites in the light of current research. Appl Geochemistry 7:393–416. https://doi.org/10.1016/0883-2927(92)90002-K

    Article  Google Scholar 

  116. Mackay D, Simandl GJ (2014) Geology, market and supply chain of niobium and tantalum—a review. Miner Depos 49:1025–1047. https://doi.org/10.1007/s00126-014-0551-2

    Article  Google Scholar 

  117. Melcher F, Graupner T, Gäbler HE et al (2015) Tantalum-(niobium-tin) mineralisation in African pegmatites and rare metal granites: Constraints from Ta-Nb oxide mineralogy, geochemistry and U-Pb geochronology. Ore Geol Rev 64:667–719. https://doi.org/10.1016/j.oregeorev.2013.09.003

    Article  Google Scholar 

  118. Dewaele S, Hulsbosch N, Cryns Y et al (2016) Geological setting and timing of the world-class Sn, Nb-Ta and Li mineralization of Manono-Kitotolo (Katanga, Democratic Republic of Congo). Ore Geol Rev 72:373–390. https://doi.org/10.1016/j.oregeorev.2015.07.004

    Article  Google Scholar 

  119. Oyediran IA, Nzolang C, Mupenge MP, Idakwo SO (2020) Structural control and Sn-Ta-Nb mineralization potential of pegmatitic bodies in Numbi, South Kivu Eastern D.R Congo. Lithos 368–369:105601. https://doi.org/10.1016/j.lithos.2020.105601

  120. Safiannikoff A, Van Wambeke L (1967) La pegmatite radioactive à béryl de Kobokobo et les autres venues pegmatitiques et filoniennes de la région de Kamituga - Kivu - Rép. du Congo. Miner Depos 2:119–130. https://doi.org/10.1007/BF00206584

    Article  Google Scholar 

  121. Van Wambeke L (1987) La minéralogie de la pegmatite de Kobokobo, Kivu, Zaïre. Bull - Soc Belge Geol 96:137–142

    Google Scholar 

  122. De Kun N (1960) Les gisements de cassitérite et de columbo-tantalite du Nord Lugulu, Kivu, Congo belge. Ann la Société géologique Belgique 81–189

  123. Dill HG (2017) An overview of the pegmatitic landscape from the pole to the equator – Applied geomorphology and ore guides. Ore Geol Rev 91:795–823. https://doi.org/10.1016/j.oregeorev.2017.08.020

    Article  Google Scholar 

  124. Jäger E, Niggli E, Van der Veen AH (1959) A hydrated barium-strontium pyrochlore in a biotite rock from Panda Hill, Tanganyika. Mineral Mag J Mineral Soc 32:10–25. https://doi.org/10.1180/minmag.1959.032.244.03

    Article  Google Scholar 

  125. Harris PM (1965) Pandaite from the Mrima Hill niobium deposit (Kenya). Mineral Mag J Mineral Soc 35:277–290. https://doi.org/10.1180/minmag.1965.035.270.03

    Article  Google Scholar 

  126. Abedini A, Khosravi M, Dill HG (2020) Rare earth element geochemical characteristics of the late Permian Badamlu karst bauxite deposit. NW Iran J African Earth Sci 172:103974. https://doi.org/10.1016/j.jafrearsci.2020.103974

    Article  Google Scholar 

Download references

Acknowledgements

The authors wish to thank the African Union for financial support through the Pan African University scholarship. The first author is grateful for the Else-Kröener-Fresenius-Stiftung and the BEBUC scholarship program. We are grateful to the anonymous reviewers, Prof. Harald Dill and the Section Editor, Dr Virginia McLemore, for their comments which greatly improved the manuscript of this paper. This work is part of the first author’s PhD thesis.

Funding

The Pan African University scholarship and the Else Kröner-Fresenius-Stiftung

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Georges M. Kasay.

Ethics declarations

Conflict of Interest

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kasay, G.M., Bolarinwa, A.T., Aromolaran, O.K. et al. Rare Earth Element Deposits and Their Prospects in the Democratic Republic of Congo. Mining, Metallurgy & Exploration 39, 625–642 (2022). https://doi.org/10.1007/s42461-022-00551-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s42461-022-00551-x

Keywords

Navigation