Skip to main content
Log in

A Computational Study of Wall Effects on the Aeroelastic Behavior of Spanwise Flexible Wings

  • Original Paper
  • Published:
International Journal of Aeronautical and Space Sciences Aims and scope Submit manuscript

Abstract

In this paper, we present a computational aeroelastic analysis of flexible flapping wings in the vicinity of solid walls. The wall effects change the aerodynamic forces and moments of the wings, and thus the aeroelastic behavior. The numerical simulation is carried out using a fluid–structure interaction framework by coupling the computational fluid dynamics and computational structural dynamics. A preconditioned Navier–Stokes solver based on a finite volume method is used for the aerodynamic analysis. The structural analysis is performed using a nonlinear structural model based on a geometrically exact beam formulation. The method is validated using previous numerical and experimental results. The aeroelastic characteristics of the flexible wings with and without the walls are computed and compared.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18

Similar content being viewed by others

Abbreviations

C L :

Lift coefficient

C *L :

Sectional lift coefficient

C T :

Thrust coefficient

C *T :

Sectional thrust coefficient

c :

Wing chord length

e :

Specific total energy

L :

Lift

T x :

Thrust

n :

Unit normal vector

p :

Pressure

T :

Temperature

T:

Period of a plunging motion

u :

Velocity component in the x direction

v :

Velocity component in the y direction

w :

Velocity component in the z direction

ρ :

Density

Ω :

Angular velocity

References

  1. Bohorquez F, Samuel P, Sirohi J, Pines D, Rudd L, Perel R (2003) Design, analysis and hover performance of a rotary wing micro air vehicle. J Am Helicopter Soc 48:80–90

    Article  Google Scholar 

  2. Ansari SA, Zbikowski R, Knowles K (2006) Aerodynamic modelling of insect-like flapping flight for micro air vehicles. Progr Aerosp Sci 42(2):129–172

    Article  Google Scholar 

  3. Woods MI, Henderson JF, Lock GD (2001) Energy requirements for the flight of micro air vehicles. Aeronaut J 105(1045):135–149

    Article  Google Scholar 

  4. Shkarayev S, Silin D (2009) Aerodynamics of flapping-wing micro air vehicles. In: 47th AIAA aerospace sciences meeting including the new horizons forum and aerospace exposition, AIAA paper 2009-878

  5. Lee J-S, Kim D-K, Lee J-Y, Han J-H (2008) Experimental evaluation of a flapping wing aerodynamic model for MAV application. In: Proceedings of SPIE, San Diego, pp 69282 M-1–69282 M-8

  6. Lesage F, Hamel N (2008) Aerodynamic study of a flapping-wing NAV using a combination of numerical and experimental methods. In: 26th AIAA applied aerodynamics conference, AIAA paper 2008-6396

  7. Zhang Y, Ye Z, Xie F (2012) Computational investigation of a doubly hinged flapping airfoil. AIAA J 50(12):2643–2654

    Article  Google Scholar 

  8. Takizawa K, Henicke B, Puntel A, Kostov N, Tezduyar TE (2013) Computer modeling techniques for flapping-wing aerodynamics of a locust. Comput Fluids 85:125–134

    Article  MathSciNet  MATH  Google Scholar 

  9. Taira K, Colonius T (2009) Three-dimensional flows around low-aspect-ratio flat-plate wings at low Reynolds numbers. J Fluid Mech 623:187–207

    Article  MATH  Google Scholar 

  10. Lian Y, Shyy W (2007) Laminar-turbulent transition of a low Reynolds number rigid or flexible airfoil. AIAA J 45(7):1501–1513

    Article  Google Scholar 

  11. Viieru D, Tang J, Lian Y, Liu H, Shyy W (2006) Flapping and flexible wing aerodynamics of low Reynolds number flight vehicles. In: 44th AIAA aerospace sciences meeting and exhibit, AIAA paper 2006-503

  12. Heathcote S, Gursul I (2007) Flexible flapping airfoil propulsion at low Reynolds numbers. AIAA J 45(5):1066–1079

    Article  Google Scholar 

  13. Hamamoto M, Ohta Y, Hara K, Hisada T (2007) Application of fluid-structure interaction analysis to flapping Flight of insects with deformable wings. Adv Robot 21(1-2):1–21

    Article  Google Scholar 

  14. Gursul I, Cleaver DJ, Wang Z (2014) Control of low Reynolds number flows by means of fluid-structure interactions. Progr Aerosp Sci 64:17–55

    Article  Google Scholar 

  15. Heathcote S, Wang Z, Gursul I (2008) Effect of spanwise flexibility on flapping wing propulsion. J Fluids Struct 24:183–199

    Article  Google Scholar 

  16. Chimakurthi SK (2009) A computational aeroelasticity framework for analyzing flapping wings. Ph.D. Dissertation, Department of Aerospace Engineering, The University of Michigan

  17. Aono H, Chimakurthi SK, Cesnik CES, Liu H, Shyy W (2009) Computational modeling of spanwise flexibility effects on flapping wing aerodynamics. In: 47th AIAA aerospace sciences meeting including the new horizons forum and aerospace exposition, AIAA paper 2009-1270

  18. Gordnier RE, Chimakurthi SK, Cesnik CES, Attar PJ (2013) High-fidelity aeroelastic computations of a flapping wing with spanwise flexibility. J Fluids Struct 40:86–104

    Article  Google Scholar 

  19. Cho H, Kwak JY, Shin SJ, Lee N, Lee S (2014) A computational analysis for flapping wing by coupling the geometrically exact beam and preconditioned Navier–Stokes solution. In: 55th AIAA/ASME/ASCE/AHS/ASC structures, structural dynamics, and materials conference, AIAA paper 2014-1519

  20. Lee N, Lee S, Cho H, Kwak JY, Shin SJ (2014) Computational analysis for flapping wing by coupled CFD and CSD solutions. In: 29th congress of the international council of the aeronautical sciences

  21. Rae WH, Pope A (1984) Low-speed wind tunnel testing, 2nd edn. Wiley, New York

    Google Scholar 

  22. Lian Y (2009) Numerical investigation of boundary effects on flapping wing study. In: 47th AIAA aerospace sciences meeting including the new horizons forum and aerospace exposition, AIAA paper 2009-539

  23. Igarashi H, Durbin PA, Hu H, Waltermire S, Wehrmeyer J (2011) The effects of wind tunnel walls on the near-field behavior of a wingtip vortex. In: 49th AIAA aerospace sciences meeting including the new horizons forum and aerospace exposition, AIAA paper 2011-1165

  24. Maeda M, Liu H (2013) Ground effect in fruit fly hovering: a three-dimensional computational study. J Biomech Sci Eng 8(4):344–355

    Article  Google Scholar 

  25. Quinn DB, Moored KW, Dewey PA, Smits AJ (2014) Unsteady propulsion near a solid boundary. J Fluid Mech 742:152–170

    Article  Google Scholar 

  26. Zhang X, Lua KB, Chang R, Lim TT, Yeo KS (2014) Experimental study of ground effect on three-dimensional insect-like flapping motion. Int J Mod Phys Conf Ser 34:1460384

    Article  Google Scholar 

  27. Weiss JM, Smith WA (1995) Preconditioning applied to variable and constant density flows. AIAA J 33(11):2050–2057

    Article  MATH  Google Scholar 

  28. Roe PL (1981) Approximate Riemann solvers, parameter vectors, and difference schemes. J Comput Phys 43:357–372

    Article  MathSciNet  MATH  Google Scholar 

  29. van Leer B (1979) Towards the ultimate conservative difference scheme V. A second order sequel to Godunov’s method. J Comput Phys 32:101–136

    Article  MATH  Google Scholar 

  30. Rendall TCS, Allen CB (2008) Unified fluid-structure interpolation and mesh motion using radial basis functions. Int J Numer Methods Eng 74(10):1519–1559

    Article  MathSciNet  MATH  Google Scholar 

  31. Schaback R, Wendland H (2000) Adaptive greedy techniques for approximate solution of large RBF systems. Numer Algorithms 24(3):239–254

    Article  MathSciNet  MATH  Google Scholar 

  32. Thomas PD, Lombard CK (1979) Geometric conservation law and its application to flow computations on moving grids. AIAA J 17(10):1030–1037

    Article  MathSciNet  MATH  Google Scholar 

  33. Hodges DH (1990) A mixed variational formulation based on exact intrinsic equations for dynamics of moving beams. Int J Solids Struct 26(11):1253–1273

    Article  MathSciNet  MATH  Google Scholar 

  34. Shang X (1995) Aeroelastic stability of composite hingeless rotors with finite-state unsteady aerodynamics. Ph. D. Dissertation, Georgia Institute of Technology

  35. Cheng T (2002) Structural dynamics modeling of helicopter blades for computational aeroelasticity. M.S. Thesis, Massachusetts Institute of Technology

  36. Bauchau OA (2006) DYMORE users’ manual, school of aerospace engineering. Georgia Inst. of Technology, Atlanta

    Google Scholar 

  37. Liu P, Bose N (1963) Propulsive performance from oscillating propulsors with spanwise flexibility. Proc R Soc A Math Phys Eng Sci 1997(453):1763–1770

    Google Scholar 

  38. Jeong J, Hussain F (1995) On the identification of a vortex. J Fluid Mech 285:69–94

    Article  MathSciNet  MATH  Google Scholar 

  39. Shyy W, Trizila P, Kang C-K, Aono H (2009) Can tip vortices enhance lift of a flapping wing? AIAA J 47(2):289–293

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by Inha University and the National Research Foundation of Korea Grant funded by the Korean Government (2011-0029094).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Seungsoo Lee.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lee, N., Lee, S., Cho, H. et al. A Computational Study of Wall Effects on the Aeroelastic Behavior of Spanwise Flexible Wings. Int. J. Aeronaut. Space Sci. 20, 596–610 (2019). https://doi.org/10.1007/s42405-019-00168-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s42405-019-00168-3

Keywords

Navigation