Skip to main content
Log in

Sequential Detection of Fe3+ and Ascorbic Acid with Cu Nanosheets as Fluorescent Probe and Their Application

  • Original Article
  • Published:
Chemistry Africa Aims and scope Submit manuscript

Abstract

A novel fluorescent probe of copper nanosheets (Cu NS) with blue emission was synthesized using ascorbic acid (AA) as stabilizer and reductant, which was characterized with TEM, XPS, and FT-IR. Several studies that include optical spectra, FT-IR spectra, and fluorescence lifetime were provided to explore the fluorescence quenching mechanism between Cu NS and Fe3+, negating inner filter effect (IFE) and fluorescence resonance energy transfer (FRET), which was found to be dynamic quenching through electron transfer. Due to the reducing property of AA, the fluorescence of Cu NS was restored. Additionally, the Stern–Volmer equation was established to calculate Kq and Ksv demonstrating the quenching rate. Based on the dynamic quenching via oxidation–reduction reaction, a method was developed for the sequential detection of Fe3+ and AA, which showed brilliant sensitivity and high selectivity. The detection ranges of Fe3+ and AA were 0.06–59.4 μM and 0.06–24.4 μM, with the LOD of 31.0 nM and 7.0 nM, respectively. Furthermore, the proposed method was successfully applied to the detection of real water samples and vitamin C (VC) tablet samples with recovery range 95.03–103.25% and 96.28–101.02%. Cu NS was promising for monitoring the concentration of Fe3+ in the environment and drug analysis of AA.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Scheme 1
Fig. 5

Similar content being viewed by others

References

  1. Krauze DM, Grzelak M, Wróbel P, Veronesi G, Castillo H, Chmura L, Adamek D, Jach R, Lankosz M (2018) J Anal At Spectrom 33:1638–1644

    Article  CAS  Google Scholar 

  2. Toyokuni S (2009) Cancer Sci 100:9–16

    Article  CAS  PubMed  Google Scholar 

  3. Moretti M, Fraga DB, Rodrigues ALS (2017) CNS Drugs 31:571–583

    Article  CAS  PubMed  Google Scholar 

  4. Mastrangelo D, Pelosi E, Castelli G, Lo-Coco F, Testa U (2018) Blood Cells Mol Dis 69:57–64

    Article  CAS  PubMed  Google Scholar 

  5. Soares BM, Santos RF, Bolzan RC, Muller EI, Primel EG, Duarte FA (2016) Talanta 160:454–460

    Article  CAS  PubMed  Google Scholar 

  6. Olgaç N, Karakuş E, Şahin Y, Liv L (2021) Electroanalysis 33:2115–2121

    Article  CAS  Google Scholar 

  7. Alberti G, Emma G, Colleoni R, Nurchi VM, Pesavento M, Biesuz R (2019) Arabian J Chem 12:573–579

    Article  CAS  Google Scholar 

  8. Ngenge TA, Jabeen A, Maurice TF, Baig TA, Shaheen F (2019) Chem Afr 2:615–624

    Article  CAS  Google Scholar 

  9. Le TTN, Ly NH, Nguyen TD, Nguyen TH, Kim M-K, Zoh K-D, Joo S-W (2018) Colloids Surf A 551:1–8

    Article  CAS  Google Scholar 

  10. Stan M, Soran ML, Marutoiu C (2014) J Anal Chem 69:998–1002

    Article  CAS  Google Scholar 

  11. Peng Y, Zhang Y, Ye J (2008) J Agric Food Chem 56:1838–1844

    Article  CAS  PubMed  Google Scholar 

  12. Abellan-Llobregat A, Gonzalez-Gaitan C, Vidal L, Canals A, Morallon E (2018) Biosens Bioelectron 109:123–131

    Article  CAS  PubMed  Google Scholar 

  13. Zhou C, Li S, Zhu W, Pang H, Ma H (2013) Electrochim Acta 113:454–463

    Article  CAS  Google Scholar 

  14. Rao H, Ge H, Lu Z, Liu W, Chen Z, Zhang Z, Wang X, Zou P, Wang Y, He H, Zeng X (2016) Microchim Acta 183:1651–1657

    Article  CAS  Google Scholar 

  15. Fong JFY, Chin SF, Ng SM (2016) Biosens Bioelectron 85:844–852

    Article  CAS  PubMed  Google Scholar 

  16. Li C, Zeng J, Guo D, Liu L, Xiong L, Luo X, Hu Z, Wu F (2021) ACS Appl Mater Interfaces 13:49453–49461

    Article  CAS  PubMed  Google Scholar 

  17. Guo L, Yang L, Li M, Kuang L, Song Y, Wang L (2021) Coord Chem Rev. 440:213957

    Article  CAS  Google Scholar 

  18. Lee S, Wang S, Wern C, Yi S (1926) Materials 2021:14

    Google Scholar 

  19. Spitler EL, Koo BT, Novotney JL, Colson JW, Uribe-Romo FJ, Gutierrez GD, Clancy P, Dichtel WR (2011) J Am Chem Soc 133:19416–19421

    Article  CAS  PubMed  Google Scholar 

  20. Dong J, Zhang K, Li X, Qian Y, Zhu H, Yuan D, Xu QH, Jiang J, Zhao D (2017) Nat Commun 8:1–14

    Article  CAS  Google Scholar 

  21. Wang S, Lu Q, Yan X, Yang M, Ye R, Du D, Lin Y (2017) Talanta 168:168–173

    Article  CAS  PubMed  Google Scholar 

  22. Qu Y, Dai T, Cui Y, Zhang Y, Wang Z, Jiang Q (2021) Chem Eng J 433:133752

    Article  CAS  Google Scholar 

  23. Zhang B, Zhang J, Hua M, Wan Q, Su Z, Tan X, Liu L, Zhang F, Chen G, Tan D, Cheng X, Han B, Zheng L, Mo G (2020) J Am Chem Soc 142:13606–13613

    Article  CAS  PubMed  Google Scholar 

  24. Fu X, Zhao X, Hu X, He K, Yu Y, Li T, Tu Q, Qian X, Yue Q, Wasielewski MR, Kang Y (2020) Appl Mater Today 19:100620

    Article  Google Scholar 

  25. Wang Q, Kaminska I, Niedziolka-Jonsson J, Opallo M, Li M, Boukherroub R, Szunerits S (2013) Biosens Bioelectron 50:331–337

    Article  CAS  PubMed  Google Scholar 

  26. Rai S, Singh BK, Bhartiya P, Singh A, Kumar H, Dutta PK, Mehrotra GK (2017) J Lumin 190:492–503

    Article  CAS  Google Scholar 

  27. Gong X, Zhang Q, Gao Y, Shuang S, Choi MM, Dong C (2016) ACS Appl Mater Interfaces 8:11288–11297

    Article  CAS  PubMed  Google Scholar 

  28. Xu H, Zhou S, Liu J, Wei Y (2018) RSC Adv 8:5500–5508

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Guo Y, Cai Z (2020) Chem Phys Lett 759:138048

    Article  CAS  Google Scholar 

  30. Wang Z, Shi YE, Yang X, Xiong Y, Li Y, Chen B, Lai WF, Rogach AL (2018) Adv Funct Mater 28:1802848

    Article  CAS  Google Scholar 

  31. Lhoest J-B, Bartiaux S, Gerin PA, Genet MJ, Bertrand P, Rouxhet PG (1994) Surf Sci Spectra 3:348–356

    Article  CAS  Google Scholar 

  32. Bournel F, Laffon C, Parent P, Tourillon G (1996) Surf Sci 350:60–78

    Article  CAS  Google Scholar 

  33. Boruah SK, Boruah PK, Sarma P, Bezbaruah B, Medhi C, Medhi OK (2013) Int J Nanosci 12:1350034

    Article  CAS  Google Scholar 

  34. Molaei MJ (2020) Anal Methods 12:1266–1287

    Article  CAS  Google Scholar 

  35. Liang Z, Kang M, Payne GF, Wang X, Sun R (2016) ACS Appl Mater Interfaces 8:17478–17488

    Article  CAS  PubMed  Google Scholar 

  36. Cao X, Shen F, Zhang M, Guo J, Luo Y, Li X, Liu H, Sun C, Liu J (2013) Food Control 34:221–229

    Article  CAS  Google Scholar 

  37. Cai X, Ye J, Zhou Q, Yan Z, Li K (2020) Microchem J 159:105419

    Article  CAS  Google Scholar 

  38. Li YY, Chen JJ, Wang YP, Li HJ, Yin JH, Li MY, Wang L, Sun HJ, Chen LX (2021) Appl Surf Sci 538:148151

    Article  CAS  Google Scholar 

  39. Lin RB, Li F, Liu SY, Qi XL, Zhang JP, Chen XM (2013) Angew Chem Int Ed Engl 125:13671–13675

    Article  Google Scholar 

  40. Kumar R, Gahlyan P, Yadav N, Bhandari M, Kakkar R, Dalela M, Prasad AK (2017) Dyes Pigm 147:420–428

    Article  CAS  Google Scholar 

  41. Manigandan S, Muthusamy A, Nandhakumar R, Immanuel David C (2020) J Mol Struct 1208:127834

    Article  CAS  Google Scholar 

  42. Zhang H, Xia Y, Zhang P, Hou L, Sun Y, Lu Z, Tang Y, Tian H, Shi T (2021) J Chem 2021:5505741

    Google Scholar 

  43. Yang X, Yang J, Zhang M, Wang Y, Zhang B, Mei X (2022) Microchem. J. 174:107048

    Article  CAS  Google Scholar 

  44. Gao X, Zhou X, Ma Y, Qian T, Wang C, Chu F (2019) Appl Surf Sci 469:911–916

    Article  CAS  Google Scholar 

  45. Dong W, Yu J, Gong X, Liang W, Fan L, Dong C (2021) Spectrochim Acta Part A 247:119085

    Article  CAS  Google Scholar 

  46. Tu J, Yang X, Liu H, Chen P, Liu K, Gao J (2022) Int J Environ Anal Chem 102:243–253

    Article  CAS  Google Scholar 

  47. Guo X, Yue G, Huang J, Liu C, Zeng Q, Wang L (2018) ACS Appl Mater Interfaces 10:26118–26127

    Article  CAS  PubMed  Google Scholar 

  48. Xu J, Wang Y, Sun L, Qi Q, Zhao X (2021) Int J Biol Macromol 191:1221–1227

    Article  CAS  PubMed  Google Scholar 

  49. Huang Y, He N, Kang Q, Shen D, Wang X, Wang Y, Chen L (2019) Analyst 144:6609–6616

    Article  CAS  PubMed  Google Scholar 

  50. Ding M, Wang K, Fang M, Zhu W, Du L, Li C (2020) Spectrochim Acta Part A 234:118249

    Article  CAS  Google Scholar 

  51. Wang S (2019) J Alloys Compd 770:952–958

    Article  CAS  Google Scholar 

  52. Vetrimurugan E, Brindha K, Elango L, Ndwandwe OM (2016) Appl Water Sci 7:3267–3280

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was financially supported by the National Natural Science Foundation of China (21765015, 21808099) and the Science and Technology Innovation Platform of Jiangxi Province (20192BCD40001), China. At the same time, the authors would like to thank Shiyanjia Lab (www.shiyanjia.com) for the TEM analysis.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ping Qiu.

Ethics declarations

Conflict of interest

There are no conflicts to declare.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 5058 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wu, S., Peng, Z. & Qiu, P. Sequential Detection of Fe3+ and Ascorbic Acid with Cu Nanosheets as Fluorescent Probe and Their Application. Chemistry Africa 5, 641–650 (2022). https://doi.org/10.1007/s42250-022-00354-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s42250-022-00354-z

Keywords

Navigation