Skip to main content
Log in

Effect of boron on dissolution and repairing behavior of passive film on S31254 super-austenitic stainless steel immersed in H2SO4 solution

  • Original Paper
  • Published:
Journal of Iron and Steel Research International Aims and scope Submit manuscript

Abstract

The impact of boron on the dissolution and repairing behavior of passive films formed on S31254 super-austenitic stainless steel (SASS) was investigated. SASS was immersed in 0.5 mol/L of H2SO4 for 0, 2, 6, 10, and 14 days to explore the evolution of the passive film. The electrochemical impedance spectroscope (EIS), the Mott–Schottky analysis, and X-ray photoelectron spectroscope were utilized to analyze the semiconductor properties and compositions of the passive films. EIS showed a decrease and consequent increase over 14 days; the same pattern was observed for Cr2O3 and Cr/Fe. However, the defect density of the passive film exhibited a reverse trend. The variation in film thicknesses indicated that the passive films possessed dissolution and repairing behavior. SASS passive film had a double-layer structure; the outer layer was found to be rich in Fe3+ and Cr(OH)3, but low on Mo6+, while the inner layer was rich in Cr2O3 and low in Mo4+. The addition of boron increased the corrosion resistance and could promote the efficiency of the passive film repair, likely by promoting the migration of Mox+, which promoted the repairing of the passive film.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. Q. Yu, C.F. Dong, J.X. Liang, Z.B. Liu, K. Xiao, X.G. Li, J. Iron Steel Res. Int. 24 (2017) 282–289.

    Article  Google Scholar 

  2. A. Panagopoulos, M. Loizidou, K.J. Haralambous, Met. Mater. Int. 26 (2019) 1463–1482.

    Article  Google Scholar 

  3. H.B. Pereira, Z. Panossian, I.P. Baptista, C.R. de F. Azevedo, Mater. Res. 22 (2019) e20180211.

    Article  Google Scholar 

  4. S. Zhang, H. Li, Z. Jiang, B. Zhang, Z. Li, J. Wu, H. Feng, H. Zhu, F. Duan, Corros. Sci. 163 (2020) 108295.

    Article  Google Scholar 

  5. L.C. An, J. Cao, L.C. Wu, H.H. Mao, Y.T. Yang, J. Iron Steel Res. Int. 23 (2016) 1333–1341.

    Article  Google Scholar 

  6. Y.L. Huang, I.N.A. Oguocha, S. Yannacopoulos, Wear 258 (2005) 1357–1363.

    Article  Google Scholar 

  7. J.L. Lv, T.X. Liang, C. Wang, L.M. Dong, J. Electroanalytical Chem. 757 (2015) 263–269.

    Article  Google Scholar 

  8. C. Loable, I.N. Viçosa, T.J. Mesquita, M. Mantel, R.P. Nogueira, G. Berthomé, E. Chauveau, V. Roche, Mater. Chem. Phys. 186 (2017) 237–245.

    Article  Google Scholar 

  9. M. Santamaria, G. Tranchida, F. Di Franco, Corros. Sci. 173 (2020) 108778.

    Article  Google Scholar 

  10. Y. Zhang, H. Luo, Q. Zhong, H. Yu, J. Lv, Chin. J. Mech. Eng. 32 (2019) 27.

    Article  Google Scholar 

  11. S. Sahu, O.J. Swanson, T. Li, A.Y. Gerard, J.R. Scully, G.S. Frankel, Electrochim. Acta 354 (2020) 136749.

    Article  Google Scholar 

  12. Z. Zhang, B. Ter-Ovanessian, S. Marcelin, B. Normand, Electrochim. Acta 353 (2020) 136531.

    Article  Google Scholar 

  13. J. Dai, H. Feng, H.B. Li, Z.H. Jiang, H. Li, S.C. Zhang, P. Zhou, T. Zhang, Corros. Sci. 174 (2020) 108792.

    Article  Google Scholar 

  14. J. Fan, Q.Z. Zhang, Int. J. Electrochem. Sci. (2020) 7624–7632.

  15. C.T. Liu, J.K. Wu, Corros. Sci. 49 (2007) 2198–2209.

    Article  Google Scholar 

  16. B. Li, H. Qu, Y. Lang, H. Feng, Q. Chen, H. Chen, Corros. Sci. 173 (2020) 108791.

    Article  Google Scholar 

  17. Y. Dou, S. Han, L. Wang, X. Wang, Z. Cui, Corros. Sci. 165 (2020) 108405.

    Article  Google Scholar 

  18. A. Pardo, M.C. Merino, A.E. Coy, F. Viejo, R. Arrabal, E. Matykina, Corros. Sci. 50 (2008) 780–794.

    Article  Google Scholar 

  19. J. Yang, J. Wu, C.Y. Zhang, S.D. Zhang, B.J. Yang, W. Emori, J.Q. Wang, J. Alloy. Compd. 819 (2020) 152943.

    Article  Google Scholar 

  20. X. Li, J. Han, P. Lu, J.E. Saal, G.B. Olson, G.S. Frankel, J.R. Scully, K. Ogle, J. Electrochem. Soc. 167 (2020) 061505.

    Article  Google Scholar 

  21. R. Marin, H. Combeau, J. Zollinger, M. Dehmas, B. Rouat, A. Lamontagne, N. Loukachenko, L. Lhenry-Robert, Metall. Mater. Trans. A 51 (2020) 3526–3534.

    Article  Google Scholar 

  22. Q. Wang, L. Wang, W. Zhang, J. Li, K. Chou, Metall. Mater. Trans. B 51 (2020) 1773–1783.

    Article  Google Scholar 

  23. M. Peruzzo, T.D. Beux, M.F.C. Ordoñez, R.M. Souza, M.C.M. Farias, Corros. Sci. 129 (2017) 26–37.

    Article  Google Scholar 

  24. T. Takei, M. Yabe, A. Ooi, E. Tada, A. Nishikata, J. Electrochem. Soc. 166 (2019) C375–C381.

    Article  Google Scholar 

  25. Y. Cui, M.S. Qurashi, J. Wang, T. Chen, J. Bai, N. Dong, C. Zhang, P. Han, Steel Res. Int. 90 (2019) 1900041.

    Article  Google Scholar 

  26. M.S. Qurashi, Y.S. Cui, J. Wang, N. Dong, J.G. Bai, P.D. Han, Int. J. Electrochem. Sci. 15 (2020) 2987–3002.

    Article  Google Scholar 

  27. J. Wang, Y. Cui, J. Bai, N. Dong, Y. Liu, C. Zhang, P. Han, Mater. Lett. 252 (2019) 60–63.

    Article  Google Scholar 

  28. J. Bai, Y. Cui, J. Wang, N. Dong, M.S. Qurashi, H. Wei, Y. Yang, P. Han, Metals 8 (2018) 497.

    Article  Google Scholar 

  29. J. Tang, Z. Zhang, Y. Wang, P. Ju, Y. Tang, Y. Zuo, Corros. Sci. 135 (2018) 222–232.

    Article  Google Scholar 

  30. H. Luo, C.F. Dong, X.G. Li, K. Xiao, Electrochim. Acta 64 (2012) 211–220.

    Article  Google Scholar 

  31. L. Zhang, X. Tang, Z. Wang, T. Li, Z. Zhang, M. Lu, Int. J. Electrochem. Sci. 12 (2017) 8806–8819.

    Article  Google Scholar 

  32. F. Mohammadi, T. Nickchi, M.M. Attar, A. Alfantazi, Electrochim. Acta 56 (2011) 8727–8733.

    Article  Google Scholar 

  33. R.M. Fernández-Domene, E. Blasco-Tamarit, D.M. García-García, J. García-Antón, Thin Solid Films 558 (2014) 252–258.

    Article  Google Scholar 

  34. Z. Cui, L. Wang, H. Ni, W. Hao, C. Man, S. Chen, X. Wang, Z. Liu, X. Li, Corros. Sci. 118 (2017) 31–48.

    Article  Google Scholar 

  35. J. Huang, X. Liu, E.H. Han, X. Wu, Corros. Sci. 53 (2011) 3254–3261.

    Article  Google Scholar 

  36. W.Y. Lai, W.Z. Zhao, Z.F. Yin, J. Zhang, Surf. Interface Anal. 44 (2012) 418–425.

    Article  Google Scholar 

  37. S. Marcelin, B. Ter-Ovanessian, B. Normand, Electrochem. Communicat. 66 (2016) 62–65.

    Article  Google Scholar 

  38. A. Fattah-alhosseini, Arabian J. Chem. 9 (2016) S1342–S1348.

    Article  Google Scholar 

  39. X. Yue, L. Zhang, Y. Hua, J. Wang, N. Dong, X. Li, S. Xu, A. Neville, Appl. Surf. Sci. 529 (2020) 147170.

    Article  Google Scholar 

  40. V. Maurice, H. Peng, L.H. Klein, A. Seyeux, S. Zanna, P. Marcus, Faraday Discuss. 180 (2015) 151–170.

    Article  Google Scholar 

  41. X. Zhang, J. Zhao, T. Xi, M.B. Shahzad, C. Yang, K. Yang, J. Mater. Sci. Technol. 34 (2018) 2149–2159.

    Article  Google Scholar 

  42. D.N. Zou, R. Li, J. Li, W. Zhang, D. Wang, Y. Han, J. Iron Steel Res. Int. 21 (2014) 630–635.

    Article  Google Scholar 

  43. G. Tranchida, M. Clesi, F. Di Franco, F. Di Quarto, M. Santamaria, Electrochim. Acta 273 (2018) 412–423.

    Article  Google Scholar 

  44. X. Li, K. Ogle, J. Electrochem. Soc. 166 (2019) C3179–C3185.

    Article  Google Scholar 

  45. S. He, D. Jiang, Int. J. Electrochem. Sci. (2018) 4876–4890.

  46. L. Cao, Z.B. Qin, Y.D. Deng, C. Zhong, W.B. Hu, Z. Wu, Int. J. Electrochem. Sci. 15 (2020) 628–638.

    Article  Google Scholar 

  47. C.H. Won, J.H. Jang, S.D. Kim, J. Moon, H.Y. Ha, J.Y. Kang, C.H. Lee, T.H. Lee, N. Kang, J. Nucl. Mater. 515 (2019) 206–214.

    Article  Google Scholar 

  48. Y. Zhang, C. Zhang, Z. Zhang, N. Dong, J. Wang, Y. Liu, Z. Lei, P. Han, Metals 10 (2020) 577.

    Article  Google Scholar 

  49. J. Li, C. Zhang, L. Xu, Z. Zhang, N. Dong, Y. Liu, J. Wang, Y. Zhang, L. Ling, P. Han, Phys. B Conden. Matter 568 (2019) 25–30.

    Article  Google Scholar 

  50. J.D. Henderson, X. Li, D.W. Shoesmith, J.J. Noël, K. Ogle, Corros. Sci. 147 (2019) 32–40.

    Article  Google Scholar 

  51. H.Y. Ha, T.H. Lee, J.H. Bae, D. Chun, Metals 8 (2018) 653.

    Article  Google Scholar 

  52. J.L. Lv, T.X. Liang, C. Wang, Mater. Lett. 171 (2016) 38–41.

    Article  Google Scholar 

  53. D.G. Li, J.D. Wang, D.R. Chen, P. Liang, Int. J. Hydrogen Energy 40 (2015) 5947–5957.

    Article  Google Scholar 

Download references

Acknowledgements

The research was financially supported by the National Natural Science Foundation of China (Grant Nos. U1860204, 51871159 and 52104338) and the Natural Science Foundation of Shanxi Province (Grant No. 201901D111103).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Jian Wang or Pei-de Han.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 477 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, Th., Wang, J., Bai, Jg. et al. Effect of boron on dissolution and repairing behavior of passive film on S31254 super-austenitic stainless steel immersed in H2SO4 solution. J. Iron Steel Res. Int. 29, 1012–1025 (2022). https://doi.org/10.1007/s42243-021-00693-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s42243-021-00693-0

Keywords

Navigation