Skip to main content

Advertisement

Log in

Progress and current challenges for CO2 capture materials from ambient air

  • Review
  • Published:
Advanced Composites and Hybrid Materials Aims and scope Submit manuscript

Abstract

As a major component of greenhouse gases, excessive carbon dioxide (CO2) in the atmosphere can affect human health and ecosystems. Therefore, the capture and transformation of CO2 have attracted extensive attention in academic circles in recent years. Direct air capture (DAC) of CO2 is a technology developed in recent years that can capture and collect CO2 directly from the ambient air, which is a potential negative CO2 emission technology. Currently, DAC technology is being promoted worldwide. Therefore, given the lack of a timely review of the latest developments in DAC technology, an appropriate and timely summary of this technology and a comprehensive understanding of it is necessary. In this paper, we review the research progress of adsorbent materials for directly capturing CO2 from ambient air in recent years, including liquid-based absorbent, solid adsorbent, and moisture-swing adsorbent. How their chemical composition, structure, morphology, and modification method affects their performance and long-term use is thoroughly discussed. In addition to efficient CO2 adsorption properties, designing low-cost sustainable materials is critical, especially for practical applications. Therefore, the technical and economic evaluation of CO2 adsorbents directly capturing from ambient air is reviewed. This review is of great significance for researchers to fully understand the development status and future trends of direct capture of CO2 from ambient air.

Graphical Abstract

This review provides the latest adsorbents that have been developed and applied to capture CO2 directly from ambient air, and highlights key research challenges.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18

Similar content being viewed by others

Abbreviations

AC:

Activated carbon

ACH:

Activated carbon honeycombs

AS:

3-Aminopropyl triethoxy silane

AMP:

2-Amino-2-methyl-1-propanol

AHTSA:

Amine hybrid titania/silsesquioxane composite aerogel

BUMEA:

2-(Butylamino)ethanol

BTIG:

Trichelating iminoguanidine ligand

BIGs:

Bis(iminoguanidine)

CCUS:

Carbon dioxide capture, utilization, and storage

CCU:

Carbon capture and storage

CTAB:

Cetyltrimethylammonium bromid

CTMA:

Cetyltrimethylammonium

CE:

Carbon Engineering

DAC:

Direct air capture

DEA:

Diethanolamine

DEGMEE:

Diethylene glycol monoethyl ether

DGA:

2-(2-Aminoethoxy)ethanol

DMMEA:

2-(Dimethylamino)ethanol

DIPA:

Bis(2-hydroxypropyl)amine

DSC:

Differential scanning calorimetry

DFM:

Dual Function Materials

EG :

Ethylene glycol

EMEA:

2-(Ethylamino)ethanol

(EMPY)(BH4):

1-Ethyl-1-methylpyrrolidinium borohydride IL

ED:

Eethylene diamine

Gly:

Glycine

GlyGly:

Glycylglycine

GBIG:

Glyoxal-bis(iminoguanidine)

HIPE:

High internal phase emulsion

HAS:

Hyperbranched aminosilica

IPCC:

Intergovernmental Panel on Climate Change

ILs:

Ionic liquids

LSX:

Low silica type X

LDH:

Layered Double Hydroxide

MAHSM:

Mono Amine based Hybrid Silica Material

M2(dobpdc):

M = Mg, Mn, Fe, Co, Ni, Zn; dobpdc4−  = 4,4'-dioxido-3,3'-biphenyldicarboxylate

MEA:

Monoethanolamine

MDEA:

Methyldiethanolamine

MCM-41:

Mesoporous material with a hierarchical structure

MSA:

Moisture swing adsorbents

MOF:

Metal organic framework

MBS:

Molecular basket sorbent

MMOs:

Mixed metal oxides

Mmen:

N,N′-dimethylethylenediamine

NAS:

National Academy of Sciences

NOAA:

National Oceanic and Atmospheric Administration

NMR:

Nuclear magnetic resonance

PEHA:

Pentaethylenehexamine

PrOH:

1-Propanol

PyBIG:

2,6-Pyridinebis(iminoguanidine)

PPI:

Poly(propylenimine)

PEI:

Poly(ethylenimine)

Ph-X-YY:

Aryl-Alkyl amine reach molecules

PEG:

Polyethylene glycol

PME:

Pore-expanded MCM-41 with a surface CTMA+ layer

PVC:

Polyvinylchloride

PEI@PGD-H:

Polyethylenimine-Grafted HKUST-Type MOF/PolyHIPE Porous Composites

QMPRs:

Quaternary ammonium functionalized mesoporous adsorbents

SBA-15:

Mesoporous silica

Sar:

Sarcosine

TBMEA:

2-(Tertbutylamino)ethanol

TEAB:

Tetraethylammonium bromide

TPAB:

Tetrapropylammonium bromide

TBAB:

Tetra-n-butyl ammonium bromide

TRI-PE-MCM-41:

Triamine-grafted pore-expanded mesoporous silica

TGA:

Thermal gravimetric analyzer

TRI:

3-(2-(2-Aminoethylamino)ethylamino)propyl-trimethoxysilane

TREN:

Tris (2-amino ethyl) amine

TEPA:

Tetraethylenepentamine

TSA:

Temperature Swing Adsorption

TVSA:

Temperature Vacuum Swing Adsorption

VS:

Vinyl triethoxy silane

VTSA:

Vacuum-pressure temperature swing adsorption

References

  1. Gibbins J, Chalmers H (2008) Carbon capture and storage. Energ Policy 36:4317–4322. https://doi.org/10.1016/j.enpol.2008.09.058

  2. NOAA (2021) Despite pandemic shutdowns, carbon dioxide and methane surged in 2020. https://research.noaa.gov/article/ArtMID/587/ArticleID/2742. Accessed 7 April 2021

  3. Sayari A, Liu Q, Mishra P (2016) Enhanced adsorption efficiency through materials design for direct air capture over supported polyethylenimine. CHEMSUSCHEM 9:2796–2803. https://doi.org/10.1002/cssc.201600834

  4. Wang Q, Luo JZ, Zhong ZY, Borgna A (2011) CO2 capture by solid adsorbents and their applications: current status and new trends. Energ Environ Sci 4:42–55. https://doi.org/10.1039/c0ee00064g

    Article  CAS  Google Scholar 

  5. Gao WL, Liang SY, Wang RJ, Jiang Q, Zhang Y, Zheng QW, Xie BQ, Toe CY, Zhu XC, Wang JY, Huang L, Gao YS, Wang Z, Jo C, Wang Q, Wang LD, Liu YF, Louis B, Scott J, Roger AC, Amal R, Heh H, Park SE (2020) Industrial carbon dioxide capture and utilization: state of the art and future challenges. Chem Soc Rev 49:8584–8686. https://doi.org/10.1039/d0cs00025f

    Article  CAS  Google Scholar 

  6. Lackner KS, Brennan S, Matter JM, Park AH, Wright A, van der Zwaan B (2012) The urgency of the development of CO2 capture from ambient air. P Natl Acad Sci USA 109:13156–13162. https://doi.org/10.1073/pnas.1108765109

    Article  Google Scholar 

  7. Sayari A (1996) Catalysis by crystalline mesoporous molecular sieves. Chem Mater 8:1840–1852. https://doi.org/10.1021/cm950585

    Article  CAS  Google Scholar 

  8. Wang XX, Ma XL, Schwartz V, Clark JC, Overbury SH, Zhao SQ, Xu XC, Song CS (2012) A solid molecular basket sorbent for CO2 capture from gas streams with low CO2 concentration under ambient conditions. Phys Chem Chem Phys 14:1485–1492. https://doi.org/10.1039/c1cp23366a

    Article  CAS  Google Scholar 

  9. Sanz-Perez ES, Murdock CR, Didas SA, Jones CW (2016) Direct capture of CO2 from ambient air. Chem Rev 116:11840–11876. https://doi.org/10.1021/acs.chemrev.6b00173

  10. Wotzka A, Dühren R, Suhrbier T, Polyakov M, Wohlrab S (2020) Adsorptive capture of CO2 from air and subsequent direct esterification under mild conditions. ACS Sustain Chem Eng 8:5013–5017. https://doi.org/10.1021/acssuschemeng.0c00247

  11. Xu XG, Myers MB, Versteeg FG, Pejcic B, Heath C, Wood CD (2020) Direct air capture (DAC) of CO2 using polyethylenimine (PEI) "snow": a scalable strategy. Chem Commun 56:7151–7154. https://doi.org/10.1039/d0cc02572k

  12. Rim G, Feric TG, Moore T, Park AHA (2021) Solvent impregnated polymers loaded with liquid‐like nanoparticle organic hybrid materials for enhanced kinetics of direct air capture and point source CO2 capture. Adv Funct Mater 31:2010047–2010059. https://doi.org/10.1002/adfm.202010047

  13. Shi XY, Xiao H, Azarabadi H, Song JZ, Wu XL, Chen X, Lackner KS (2020) Sorbents for the direct capture of CO2 from ambient Air. Angew Chem Int Edit 59:6984–7006. https://doi.org/10.1002/anie.201906756

  14. Keith DW, Ha-Duong M, Stolaroff JK (2005) Climate strategy with CO2 capture from the air. Clim Change 74:17–45. https://doi.org/10.1007/s10584-005-9026-x

  15. Nemet GF, Callaghan MW, Creutzig F, Fuss S, Hartmann J, Hilaire J, Lamb WF, Minx JC, Rogers S, Smith P (2018) Negative emissions—Part 3: Innovation and upscaling. Environ Res Lett 13:063003–063032. https://doi.org/10.1088/1748-9326/aabff4

  16. Jacobson MZ (2019) The health and climate impacts of carbon capture and direct air capture. Energy Environ Sci 12:3567–3574. https://doi.org/10.1039/c9ee02709b

  17. Blum HA, Stutzman LF, Dodds WS (1952) Gas absorption - absorption of carbon dioxide from air by sodium and potassium hydroxides. Ind Eng Chem 44:2969–2974. https://doi.org/10.1021/ie50516a053

  18. Stucki S, Schuler A, Constantinescu M (1995) Coupled CO2 recovery from the atmosphere and water electrolysis: feasibility of a new process for hydrogen storage. Int J Hydrogen Energ 20:653–663. https://doi.org/10.1016/0360-3199(95)00007-z

    Article  CAS  Google Scholar 

  19. Sherwood, ThomasKilgore (1952) Absorption and extraction. J Franklin Inst

  20. Holmes G, Keith DW (2012) An air-liquid contactor for large-scale capture of CO2 from air. Philos T R Soc A 370:4380–4403. https://doi.org/10.1098/rsta.2012.0137

    Article  CAS  Google Scholar 

  21. Holmes G, Nold K, Walsh T, Heidel K, Henderson MA, Ritchie J, Klavins P, Singh A, Keith DW (2013) Outdoor prototype results for direct atmospheric capture of carbon dioxide. Energy Procedia 37:6079–6095. https://doi.org/10.1016/j.egypro.2013.06.537

    Article  CAS  Google Scholar 

  22. Mazzotti M, Baciocchi R, Desmond MJ, Socolow RH (2013) Direct air capture of CO2 with chemicals: optimization of a two-loop hydroxide carbonate system using a countercurrent air-liquid contactor. Clim Change 118:119–135. https://doi.org/10.1007/s10584-012-0679-y

    Article  CAS  Google Scholar 

  23. Nikulshina V, Gálvez ME, Steinfeld A (2007) Kinetic analysis of the carbonation reactions for the capture of CO2 from air via the Ca(OH)2–CaCO3–CaO solar thermochemical cycle. Chem Eng J 129:75–83. https://doi.org/10.1016/j.cej.2006.11.003

    Article  CAS  Google Scholar 

  24. Sabatino F, Mehta M, Grimm A, Gazzani M, Gallucci F, Kramer GJ, Annaland MV (2020) Evaluation of a direct Air capture process combining wet scrubbing and bipolar membrane electrodialysis. Ind Eng Chem Res 59:7007–7020. https://doi.org/10.1021/acs.iecr.9b05641

    Article  CAS  Google Scholar 

  25. Sutherland BR (2019) Pricing CO2 direct air capture. Joule 3:1571–1573. https://doi.org/10.1016/j.joule.2019.06.025

    Article  Google Scholar 

  26. Zeman FS, Lackner KS (2004) Capturing carbon dioxide directly from the atmosphere. World Res Rev 16:157–172

    Google Scholar 

  27. Baciocchi R, Storti G, Mazzotti M (2006) Process design and energy requirements for the capture of carbon dioxide from air. Chem Eng Process 45:1047–1058. https://doi.org/10.1016/j.cep.2006.03.015

    Article  CAS  Google Scholar 

  28. Lackner KS (2009) Capture of carbon dioxide from ambient air. Eur Phys J-Spec Top 176:93–106. https://doi.org/10.1140/epjst/e2009-01150-3

    Article  Google Scholar 

  29. Zeman F (2007) Energy and material balance of CO2 capture from ambient air. Environ Sci Technol 41:7558–7563. https://doi.org/10.1021/es070874m

    Article  CAS  Google Scholar 

  30. Lackner KS, Grimes P, Ziock HJ (1999) Capturing carbon dioxide from air: is it an option? In: Proceedings of the 24th Annual Technical Conference on Coal Utilization & Fuel Systems, Clearwater, FL

  31. Abanades JC, Criado YA, Fernández JR (2020) An air CO2 capture system based on the passive carbonation of large Ca(OH)2 structures. Sustain Energ Fuels 4:3409–3417. https://doi.org/10.1039/d0se00094a

    Article  CAS  Google Scholar 

  32. Mahmoudkhani M, Keith DW (2009) Low-energy sodium hydroxide recovery for CO2 capture from atmospheric air—thermodynamic analysis. Int J Greenh Gas Con 3:376–384. https://doi.org/10.1016/j.ijggc.2009.02.003

    Article  CAS  Google Scholar 

  33. Zeman F (2008) Experimental results for capturing CO2 from the atmosphere. AICHE J 54:1396–1399. https://doi.org/10.1002/aic.11452

    Article  CAS  Google Scholar 

  34. Cui FH, Su SX, Xu YL, Liang Y, Wang HS, Pan YM (2016) Capture of CO2 in air for 4,5-disubstituted furan-2(5H)-ones. Org Chem Front 3:1304–1308. https://doi.org/10.1039/c6qo00328a

    Article  CAS  Google Scholar 

  35. Stolaroff JK, Keith DW, Lowry GV (2008) Carbon dioxide capture from atmospheric air using sodium hydroxide spray. Environ Sci Technol 42:2728–2735. https://doi.org/10.1021/es702607w

    Article  CAS  Google Scholar 

  36. Nikulshina V, Hirsch D, Mazzotti M, Steinfeld A (2006) CO2 capture from air and co-production of H2 via the Ca(OH)2–CaCO3 cycle using concentrated solar power–thermodynamic analysis. Energy 31:1715–1725. https://doi.org/10.1016/j.energy.2005.09.014

    Article  CAS  Google Scholar 

  37. Meier A, Gremaud N, Steinfeld A (2005) Economic evaluation of the industrial solar production of lime. Energy Convers Manage 46:905–926. https://doi.org/10.1016/j.enconman.2004.06.005

    Article  CAS  Google Scholar 

  38. Shu QD, Legrand L, Kuntke P, Tedesco M, Hamelers HVM (2020) Electrochemical regeneration of spent alkaline absorbent from direct air capture. Environ Sci Technol 54:8990–8998. https://doi.org/10.1021/acs.est.0c01977

    Article  CAS  Google Scholar 

  39. Bandi A, Specht M, Weimer T, Schaber K (1995) CO2 recycling for hydrogen storage and transportation-electrochemical CO2 removal and fixation. Energ Convers Manage 36:899–902. https://doi.org/10.1016/0196-8904(95)00148-7

    Article  CAS  Google Scholar 

  40. Okunev AG, Sharonov VE, Aristov YI, Parmon VN (2000) Sorption of carbon dioxide from wet gases by K2CO3-in-porous matrix: Influence of the matrix nature. React Kinet Catal L 71:355–362. https://doi.org/10.1023/A:1010395630719

    Article  CAS  Google Scholar 

  41. Keith DW, Holmes G, Angelo DS, Heidel K (2018) A process for capturing CO2 from the atmosphere. Joule 2:1573–1594. https://doi.org/10.1016/j.joule.2018.05.006

    Article  CAS  Google Scholar 

  42. Yang X, Rees RJ, Conway W, Puxty G, Yang Q, Winkler DA (2017) Computational modeling and simulation of CO2 capture by aqueous amines. Chem Rev 117:9524–9593. https://doi.org/10.1021/acs.chemrev.6b00662

    Article  CAS  Google Scholar 

  43. Wang T, Wang XR, Hou CL, Liu J (2020) Quaternary functionalized mesoporous adsorbents for ultra-high kinetics of CO2 capture from air. Sci Rep 10:21429–21436. https://doi.org/10.1038/s41598-020-77477-1

    Article  CAS  Google Scholar 

  44. Nouroddinvand VM, Heidari A (2021) Experimental study of CO2 absorption with MEA solution in a novel Arc-RPB. Chem Eng Process 165:108450–108457. https://doi.org/10.1016/j.cep.2021.108450

    Article  CAS  Google Scholar 

  45. Aliyu AA, Akram M, Hughes KJ, Ma L, Ingham DB, Pourkashanian M (2021) Investigation into simulating selective exhaust gas recirculation and varying pressurized hot water temperature on the performance of the pilot-scale advanced CO2 capture plant with 40 wt(%) MEA. Int J Greenh Gas Con 107:103287–103298. https://doi.org/10.1016/j.ijggc.2021.103287

    Article  CAS  Google Scholar 

  46. Roger BR (1936) Process for separating acidic gases

  47. Jindaratsamee P, Shimoyama Y, Ito A (2011) Amine/glycol liquid membranes for CO2 recovery form air. J Membr Sci 385:171–176. https://doi.org/10.1016/j.memsci.2011.09.038

    Article  CAS  Google Scholar 

  48. Mandal BP, Bandyopadhyay SS (2006) Absorption of carbon dioxide into aqueous blends of 2-amino-2-methyl-1-propanol and monoethanolamine. Chem Eng Sci 61:5440–5447. https://doi.org/10.1016/j.ces.2006.04.002

    Article  CAS  Google Scholar 

  49. Kothandaraman J, Goeppert A, Czaun M, Olah GA, Prakash GKS (2016) Conversion of CO2 from air into methanol using a polyamine and a homogeneous ruthenium catalyst. J Am Chem Soc 138:778–781. https://doi.org/10.1021/jacs.5b12354

    Article  CAS  Google Scholar 

  50. Guan C, Pan YP, Ang EPL, Hu JS, Yao CG, Huang MH, Li HF, Lai ZP, Huang KW (2018) Conversion of CO2 from air into formate using amines and phosphorus-nitrogen PN3P-Ru(II) pincer complexes. Green Chem 20:4201–4205. https://doi.org/10.1039/c8gc02186d

    Article  CAS  Google Scholar 

  51. Kiani A, Jiang KQ, Feron P (2020) Techno-economic assessment for CO2 capture from air using a conventional liquid-based absorption process. Front Energy Res 8:92–104. https://doi.org/10.3389/fenrg.2020.00092

    Article  Google Scholar 

  52. Hanusch JM, Kerschgens IP, Huber F, Neuburger M, Gademann K (2019) Pyrrolizidines for direct air capture and CO2 conversion. Chem Commun 55:949–952. https://doi.org/10.1039/c8cc08574a

    Article  CAS  Google Scholar 

  53. Barzagli F, Giorgi C, Mani F, Peruzzini M (2020) Screening study of different amine-based solutions as sorbents for direct CO2 capture from air. ACS Sustain Chem Eng 8:14013–14021. https://doi.org/10.1021/acssuschemeng.0c03800

    Article  CAS  Google Scholar 

  54. Barzagli F, Giorgi C, Mani F, Peruzzini M (2018) Reversible carbon dioxide capture by aqueous and non-aqueous amine-based absorbents: a comparative analysis carried out by 13C NMR spectroscopy. Appl Energ 220:208–219. https://doi.org/10.1016/j.apenergy.2018.03.076

    Article  CAS  Google Scholar 

  55. Wilkes JS (2002) A short history of ionic liquids—from molten salts to neoteric solvents. Green Chem 4:73–80. https://doi.org/10.1039/b110838g

    Article  CAS  Google Scholar 

  56. Bhattacharyya S, Shah FU (2016) Ether functionalized choline tethered amino acid ionic liquids for enhanced CO2 capture. ACS Sustain Chem Eng 4:5441–5449. https://doi.org/10.1021/acssuschemeng.6b00824

    Article  CAS  Google Scholar 

  57. Brennecke JF, Gurkan BE (2010) Ionic liquids for CO2 capture and emission reduction. J Phys Chem Lett 1:3459–3464. https://doi.org/10.1021/jz1014828

    Article  CAS  Google Scholar 

  58. Ohno H (2006) Functional design of ionic liquids. Bull Chem Soc Jpn 79:1665–1680. https://doi.org/10.1246/bcsj.79.1665

    Article  CAS  Google Scholar 

  59. Eleanor D, Bates RD, Mayton IN, Davis JH (2002) CO2 capture by a task-specific ionic liquid. J Am Chem Soc 124:926–927. https://doi.org/10.1021/ja017593d

    Article  CAS  Google Scholar 

  60. Wang C, Luo X, Luo H, Jiang DE, Li H, Dai S (2011) Tuning the basicity of ionic liquids for equimolar CO2 capture. Angew Chem Int Edit 50:4918–4922. https://doi.org/10.1002/anie.201008151

    Article  CAS  Google Scholar 

  61. Luo XY, Guo Y, Ding F, Zhao HQ, Cui GK, Li HR, Wang CM (2014) Significant improvements in CO2 capture by pyridine-containing anion-functionalized ionic liquids through multiple-site cooperative interactions. Angew Chem Int Edit 53:7053–7057. https://doi.org/10.1002/anie.201400957

    Article  CAS  Google Scholar 

  62. Chen Y, Ji GP, Guo SE, Yu B, Zhao YF, Wu YY, Zhang HY, Liu ZH, Han BX, Liu ZM (2017) Visible-light-driven conversion of CO2 from air to CO using an ionic liquid and a conjugated polymer. Green Chem 19:5777–5781. https://doi.org/10.1039/c7gc02346d

    Article  CAS  Google Scholar 

  63. Lombardo L, Yang H, Zhao K, Dyson PJ, Zuttel A (2020) Solvent-free and catalyst-free carbon dioxide capture and reduction to formate with borohydride ionic liquid. Chemsuschem 13:2025–2031. https://doi.org/10.1002/cssc.201903514

    Article  CAS  Google Scholar 

  64. Aghaie M, Rezaei N, Zendehboudi S (2018) A systematic review on CO2 capture with ionic liquids: current status and future prospects. Renew Sust Energ Rev 96:502–525. https://doi.org/10.1016/j.rser.2018.07.004

    Article  CAS  Google Scholar 

  65. Lombardo L, Ko Y, Zhao K, Yang HN, Züttel A (2021) Direct CO2 capture and reduction to high-end chemicals with tetraalkylammonium borohydrides. Angew Chem Int Edit 60:9580–9589. https://doi.org/10.1002/anie.202100447

    Article  CAS  Google Scholar 

  66. Aghaie M, Rezaei N, Zendehboudi S (2019) Assessment of carbon dioxide solubility in ionic liquid/toluene/water systems by extended PR and PC-SAFE EOSs: Carbon capture implication. J Mol Liq 275:323–337. https://doi.org/10.1016/j.molliq.2018.11.038

    Article  CAS  Google Scholar 

  67. Zeng SJ, Zhang X, Bai LP, Zhang XC, Wang H, Wang JJ, Bao D, Li MD, Liu XY, Zhang SJ (2017) Ionic liquid-based CO2 capture systems: Structure, interaction and process. Chem Rev 117:9625–9673. https://doi.org/10.1021/acs.chemrev.7b00072

    Article  CAS  Google Scholar 

  68. Hospital-Benito D, Lemus J, Moya C, Santiago R, Palomar J (2020) Process analysis overview of ionic liquids on CO2 chemical capture. Chem Eng J 390:124509–124519. https://doi.org/10.1016/j.cej.2020.124509

    Article  CAS  Google Scholar 

  69. Bonilla GMA, Morales-Collazo O, Brennecke JF (2019) Effect of water on CO2 capture by aprotic heterocyclic anion (AHA) ionic liquids. ACS Sustain Chem Eng 7:16858–16869. https://doi.org/10.1021/acssuschemeng.9b04424

    Article  CAS  Google Scholar 

  70. Rather AM, Srikrishnarka P, Baidya A, Shome A, Pradeep T, Manna U (2020) Evaluating the impact of tailored water wettability on performance of CO2 capture. ACS Appl Energ Mater 3:10541–10549. https://doi.org/10.1021/acsaem.0c01603

    Article  CAS  Google Scholar 

  71. Zhang SH, Shen Y, Wang LD, Chen JM, Lu YQ (2019) Phase change solvents for post-combustion CO2 capture: principle, advances, and challenges. Appl Energ 239:876–897. https://doi.org/10.1016/j.apenergy.2019.01.242

    Article  CAS  Google Scholar 

  72. Wang XF, Li BY (2015) Novel materials for carbon dioxide mitigation technology. West Virginia University, Morgantown, WV, USA, pp 3–22

    Book  Google Scholar 

  73. Seipp CA, Williams NJ, Kidder MK, Custelcean R (2017) CO2 capture from ambient air by crystallization with a guanidine sorbent. Angew Chem Int Edit 56:1042–1045. https://doi.org/10.1002/anie.201610916

    Article  CAS  Google Scholar 

  74. Cai H, Zhang XW, Lei LC, Xiao CL (2020) Direct CO2 capture from air via crystallization with a trichelating iminoguanidine ligand. ACS Omega 5:20428–20437. https://doi.org/10.1021/acsomega.0c02460

    Article  CAS  Google Scholar 

  75. Custelcean R, Williams NJ, Wang XP, Garrabrant KA, Martin HJ, Kidder MK, Ivanov AS, Bryantsev VS (2020) Dialing in direct air capture of CO2 by crystal engineering of bisiminoguanidines. Chemsuschem 13:6381–6390. https://doi.org/10.1002/cssc.202001114

    Article  CAS  Google Scholar 

  76. Brethomé FM, Williams NJ, Seipp CA, Kidder MK, Custelcean R (2018) Direct air capture of CO2 via aqueous-phase absorption and crystalline-phase release using concentrated solar power. Nat Energy 3:553–559. https://doi.org/10.1038/s41560-018-0150-z

    Article  CAS  Google Scholar 

  77. Custelcean R, Garrabrant KA, Agullo P, Williams NJ (2021) Direct air capture of CO2 with aqueous peptides and crystalline guanidines. Cell Rep Phys Sci 2:100385–100393. https://doi.org/10.1016/j.xcrp.2021.100385

    Article  CAS  Google Scholar 

  78. Custelcean R, Williams NJ, Garrabrant KA, Agullo P, Brethomé FM, Martin HJ, Kidder MK (2019) Direct air capture of CO2 with aqueous amino acids and solid bis-iminoguanidines (BIGs). Ind Eng Chem Res 58:23338–23346. https://doi.org/10.1021/acs.iecr.9b04800

    Article  CAS  Google Scholar 

  79. Liu MS, Custelcean R, Seifert S, Kuzmenko I, Gadikota G (2020) Hybrid absorption–crystallization strategies for the direct air capture of CO2 using phase-changing guanidium bases: Insights from in operando X-ray scattering and infrared spectroscopy measurements. Ind Eng Chem Res 59:20953–20959. https://doi.org/10.1021/acs.iecr.0c03863

    Article  CAS  Google Scholar 

  80. Knuutila H, Aronu UE, Kvamsdal HM, Chikukwa A (2011) Post combustion CO2 capture with an amino acid salt. Energy Procedia 4:1550–1557. https://doi.org/10.1016/j.egypro.2011.02.024

    Article  CAS  Google Scholar 

  81. Portugal AF, Sousa JM, Magalhaes FD, Mendes A (2009) Solubility of carbon dioxide in aqueous solutions of amino acid salts. Chem Eng Sci 64:1993–2002. https://doi.org/10.1016/j.ces.2009.01.036

    Article  CAS  Google Scholar 

  82. Rochelle GT (2009) Amine scrubbing for CO2 capture. Science 325:1652–1654. https://doi.org/10.1126/science.1176731

    Article  CAS  Google Scholar 

  83. Danckwerts PV (1979) The reaction of CO2 with ethanolamines. Chem Eng Sci 34:443–446. https://doi.org/10.1016/0009-2509(79)85087-3

    Article  CAS  Google Scholar 

  84. Yu CH, Huang CH, Tan CS (2012) A Review of CO2 Capture by Absorption and Adsorption. Aerosol Air Qual Res 12:745–769. https://doi.org/10.4209/aaqr.2012.05.0132

    Article  CAS  Google Scholar 

  85. Zhao A, Samanta A, Sarkar P (2013) Carbon dioxide adsorption on amine-impregnated mesoporous SBA-15 sorbents: experimental and kinetics study. Ind Eng Chem Res 52:6480–6491. https://doi.org/10.1021/ie3030533

    Article  CAS  Google Scholar 

  86. Holewinski A, Sakwa-Novak MA, Jones CW (2015) Linking CO2 sorption performance to polymer morphology in aminopolymer/silica composites through neutron scattering. J Am Chem Soc 137:11749–11759. https://doi.org/10.1021/jacs.5b06823

    Article  CAS  Google Scholar 

  87. Loganathan S, Ghoshal AK (2017) Amine tethered pore-expanded MCM-41: a promising adsorbent for CO2 capture. Chem Eng J 308:827–839. https://doi.org/10.1016/j.cej.2016.09.103

  88. Santori G, Charalambous C, Ferrari MC, Brandani S (2018) Adsorption artificial tree for atmospheric carbon dioxide capture, purification and compression. Energy 162:1158–1168. https://doi.org/10.1016/j.energy.2018.08.090

  89. Panda D, Kumar EA, Singh SK (2019) Amine modification of binder-containing zeolite 4A bodies for post-combustion CO2 capture. Ind Eng Chem Res 58:5301–5313. https://doi.org/10.1021/acs.iecr.8b03958

    Article  CAS  Google Scholar 

  90. Sumida K, Rogow DL, Mason JA, Mcdonald TM, Bloch ED, Herm ZR, Bae TH, Long JR (2012) Carbon dioxide capture in metal-organic frameworks. Chem Rev 112:724–781. https://doi.org/10.1021/cr2003272

    Article  CAS  Google Scholar 

  91. Li H, Li SN, Sun H, Hu M, Zhai QG (2018) Tuning the CO2 and C1/C2 hydrocarbon capture and separation performance for a Zn-F-triazolate framework through functional amine groups. Cryst Growth Des 18:3229–3235. https://doi.org/10.1021/acs.cgd.8b00389

    Article  CAS  Google Scholar 

  92. Lu WG, Sculley JP, Yuan DQ, Krishna R, Zhou HC (2013) Carbon dioxide capture from air using amine-grafted porous polymer networks. J Phys Chem C 117:4057–4061. https://doi.org/10.1021/jp311512q

    Article  CAS  Google Scholar 

  93. Deng JQ, Liu ZL, Du ZJ, Zou W, Zhang C (2019) Fabrication of PEI‐grafted porous polymer foam for CO2 capture. J Appl Polym Sci 136:47844–47850. https://doi.org/10.1002/app.47844

  94. Gebald C, Wurzbacher JA, Tingaut P, Zimmermann T, Steinfeld A (2011) Amine-based nanofibrillated cellulose as adsorbent for CO2 capture from air. Environ Sci Technol 45:9101–9108. https://doi.org/10.1021/es202223p

    Article  CAS  Google Scholar 

  95. Gebald C, Wurzbacher JA, Tingaut P, Steinfeld A (2013) Stability of amine-functionalized cellulose during temperature-vacuum-swing cycling for CO2 capture from air. Environ Sci Technol 47:10063–10070. https://doi.org/10.1021/es401731p

    Article  CAS  Google Scholar 

  96. Lei L, Xia W, Xin F, Feng W, Ning Z, Xiao F, Wei W, Sun Y (2010) MgO/Al2O3 sorbent for CO2 capture. Energ Fuel 24:5773–5780. https://doi.org/10.1021/ef100817f

    Article  CAS  Google Scholar 

  97. Chaikittisilp W, Kim H, Jones CW (2011) Mesoporous alumina-supported amines as potential steam-stable adsorbents for capturing CO2 from simulated flue gas and ambient air. Energ Fuel 25:5528–5537. https://doi.org/10.1021/ef201224v

    Article  CAS  Google Scholar 

  98. Sakwa-Novak MA, Jones CW (2014) Steam induced structural changes of a poly(ethylenimine) impregnated gamma-alumina sorbent for CO2 extraction from ambient air. ACS Appl Mater Inter 6:9245–9255. https://doi.org/10.1021/am501500q

    Article  CAS  Google Scholar 

  99. Sanz-Pérez ES, Arencibia A, Sanz R, Calleja G (2015) An investigation of the textural properties of mesostructured silica-based adsorbents for predicting CO2 adsorption capacity. RSC Adv 5:103147–103154. https://doi.org/10.1039/C5RA19105J

  100. Didas SA, Choi S, Chaikittisilp W, Jones CW (2015) Amine-oxide hybrid materials for CO2 capture from ambient air. Accounts Chem Res 48:2680–2687. https://doi.org/10.1021/acs.accounts.5b00284

  101. Belmabkhout Y, Serna-Guerrero R, Sayari A (2010) Amine-bearing mesoporous silica for CO2 removal from dry and humid air. Chem Eng Sci 65:3695–3698. https://doi.org/10.1016/j.ces.2010.02.044

  102. Zhai YX, Chuang SSC (2017) The nature of adsorbed carbon dioxide on immobilized amines during carbon dioxide capture from air and simulated flue gas. Energy Technol 5:510–519. https://doi.org/10.1002/ente.201600685

    Article  CAS  Google Scholar 

  103. Sanz-Pérez ES, Fernández A, Arencibia A, Calleja G, Sanz R (2019) Hybrid amine-silica materials: determination of N content by 29Si NMR and application to direct CO2 capture from air. Chem Eng J 373:1286–1294. https://doi.org/10.1016/j.cej.2019.05.117

  104. Chaikittisilp W, Khunsupat R, Chen TT, Jones CW (2011) Poly(allylamine)–mesoporous silica composite materials for CO2 capture from simulated flue gas or ambient air. Ind Eng Chem Res 50:14203–14210. https://doi.org/10.1021/ie201584t

  105. Wang JY, Huang L, Yang RY, Zhang Z, Wu JW, Gao YS, Wang Q, O'Hare D, Zhong ZY (2014) Recent advances in solid sorbents for CO2 capture and new development trends. Energ Environ Sci 7:3478–3518. https://doi.org/10.1039/c4ee01647e

  106. Younas M, Rezakazemi M, Daud M, Wazir MB, Ahmad S, Ullah N, Inamuddin, Ramakrishna S (2020) Recent progress and remaining challenges in post-combustion CO2 capture using metal-organic frameworks (MOFs). Prog Energ Combust 8:100849–100880. https://doi.org/10.1016/j.pecs.2020.100849

  107. Emerson AJ, Hawes CS, Marc M, Knowles GP, Chaffee AL, Batten SR, Turner DR (2018) A high-connectivity approach to a hydrolytically stable MOF for CO2 capture from flue gas. Chem Mater 30:6614–6618. https://doi.org/10.1021/acs.chemmater.8b03060

  108. Shi Z, Tao Y, Wu J, Zhang C, Zhang YB (2020) Robust metal-triazolate frameworks for CO2 capture from flue gas. J Am Chem Soc 142:2750–2754. https://doi.org/10.1021/jacs.9b12879

  109. Choi S, Watanabe T, Bae TH, Sholl DS, Jones CW (2012) Modification of the Mg/DOBDC MOF with amines to enhance CO2 adsorption from ultradilute gases. J Phys Chem Lett 3:1136–1141. https://doi.org/10.1021/jz300328j

  110. Shekhah O, Belmabkhout Y, Chen ZJ, Guillerm V, Cairns A, Adil K, Eddaoudi M (2014) Made-to-order metal-organic frameworks for trace carbon dioxide removal and air capture. Nat Commun 5:4228–4234. https://doi.org/10.1038/ncomms5228

  111. Kumar A, Madden DG, Lusi M, Chen KJ, Daniels EA, Curtin T, Perry JJ, Zaworotko MJ (2015) Direct air capture of CO2 by physisorbent materials. Angew Chem Int Edit 54:14372–14377. https://doi.org/10.1002/anie.201506952

  112. Zhang ZQ, Ding Q, Cui JY, Cui XL, Xing HB (2020) High and selective capture of low-concentration CO2 with an anion-functionalized ultramicroporous metal-organic framework. Sci China Mater 64:691–697. https://doi.org/10.1007/s40843-020-1471-0

  113. Sayari A, Belmabkhout Y, Serna-Guerrero R (2011) Flue gas treatment via CO2 adsorption. Chem Eng J 171:760–774. https://doi.org/10.1016/j.cej.2011.02.007

  114. Bhatt PM, Belmabkhout Y, Cadiau A, Adil K, Shekhah O, Shkurenko A, Barbour LJ, Eddaoudi M (2016) A fine-tuned fluorinated MOF addresses the needs for trace CO2 removal and air capture using physisorption. J Am Chem Soc 138:9301–9307. https://doi.org/10.1021/jacs.6b05345

  115. Choi S, Drese JH, Jones CW (2010) Adsorbent materials for carbon dioxide capture from large anthropogenic point sources. CHEMSUSCHEM 2:796–854. https://doi.org/10.1002/chin.201006214

  116. Yang M, Ma C, Xu MM, Wang SJ, Xu LZ (2019) Recent advances in CO2 adsorption from air: a Review. Curr Pollut Rep 5:272–293. https://doi.org/10.1007/s40726-019-00128-1

  117. Bahamon D, Anlu W, Builes S, Khaleel M, Vega LF (2021) Effect of amine functionalization of MOF adsorbents for enhanced CO2 capture and separation: A molecular simulation study. Front Chem 8:574622–574632. https://doi.org/10.3389/fchem.2020.574622

  118. Drage TC, Arenillas A, Smith KM, Snape CE (2008) Thermal stability of polyethylenimine based carbon dioxide adsorbents and its influence on selection of regeneration strategies. Micropor Mesopor Mat 116:504–512. https://doi.org/10.1016/j.micromeso.2008.05.009

  119. McDonald TM, Lee WR, Mason JA, Wiers BM, Hong CS, Long JR (2012) Capture of carbon dioxide from air and flue gas in the alkylamine-appended metal-organic framework mmen-Mg2(dobpdc). J Am Chem Soc 134:7056–7065. https://doi.org/10.1021/ja300034j

  120. Goeppert A, Zhang H, Czaun M, May RB, Prakash GK, Olah GA, Narayanan SR (2014) Easily regenerable solid adsorbents based on polyamines for carbon dioxide capture from the air. CHEMSUSCHEM 7:1386–1397. https://doi.org/10.1002/cssc.201301114

  121. Anyanwu JT, Wang YR, Yang RT (2019) Amine-grafted silica gels for CO2 capture including direct air capture. Ind Eng Chem Res 59:7072–7079. https://doi.org/10.1021/acs.iecr.9b05228

  122. Lee WR, Hwang SY, Ryu DW, Lim KS, Han SS, Moon D, Choi J, Hong CS (2014) Diamine-functionalized metal–organic framework: exceptionally high CO2 capacities from ambient air and flue gas, ultrafast CO2 uptake rate, and adsorption mechanism. Energ Environ Sci 7:744–751. https://doi.org/10.1039/c3ee42328j

  123. Darunte LA, Oetomo AD, Walton KS, Sholl DS, Jones CW (2016) Direct air capture of CO2 using amine functionalized MIL-101(Cr). ACS Sustain Chem Eng 4:5761–5768. https://doi.org/10.1021/acssuschemeng.6b01692

  124. Zhu JJ, Wu LB, Bu ZY, Jie SY, Li BG (2019) Polyethylenimine-grafted HKUST-type MOF/polyHIPE porous composites (PEI@PGD-H) as highly efficient CO2 adsorbents. Ind Eng Chem Res 58:4257–4266. https://doi.org/10.1021/acs.iecr.9b00213

  125. Liu J, Benin AI, Furtado AMB, Jakubczak P, Willis RR, LeVan MD (2011) Stability effects on CO2 adsorption for the DOBDC series of metal-organic frameworks. Langmuir 27:11451–11456. https://doi.org/10.1021/la201774x

  126. Furukawa H, Gandara F, Zhang YB, Jiang J, Queen WL, Hudson MR, Yaghi OM (2014) Water adsorption in porous metal-organic frameworks and related materials. J Am Chem Soc 136:4369–4381. https://doi.org/10.1021/ja500330a

  127. Li S, Chung YG, Snurr RQ (2016) High-throughput screening of metal-organic frameworks for CO2 capture in the presence of water. Langmuir 32:10368–10376. https://doi.org/10.1021/acs.langmuir.6b02803

  128. Madden DG, Scott HS, Kumar A, Chen KJ, Sanii R, Bajpai A, Lusi M, Curtin T, Perry JJ, Zaworotko MJ (2017) Flue-gas and direct-air capture of CO2 by porous metal-organic materials. Philos T R Soc A 375:20160025–20160035. https://doi.org/10.1098/rsta.2016.0025

  129. Nguyen JG, Cohen SM (2010) Moisture-resistant and superhydrophobic metal-organic frameworks obtained via postsynthetic modification. J Am Chem Soc 132:4560–4561. https://doi.org/10.1021/ja100900c

  130. Mukherjee S, Sikdar N, O'Nolan D, Franz DM, Gascon V, Kumar A, Kumar N, Scott HS, Madden DG, Kruger PE (2019) Trace CO2 capture by an ultramicroporous physisorbent with low water affinity. Sci Adv 5:eaax9171–eaax9177. https://doi.org/10.1126/sciadv.aax9171

  131. Chen Y, Qiao Z, Huang J, Wu H, Xiao J, Xia Q, Xi H., Hu J, Zhou J, Li Z (2018) Unusual moisture-enhanced CO2 capture within microporous PCN-250 frameworks. ACS Appl Mater Inter 10:38638–38647. https://doi.org/10.1021/acsami.8b14400

  132. Sadiq MM, Batten MP, Mulet X, Freeman C, Konstas K, Mardel JI, Tanner J, Ng D, Wang XD, Howard S, Hill MR, Thornton AW (2020) A pilot‐scale demonstration of mobile direct air capture using metal‐organic frameworks. Adv Sustain Syst 4:2000101–2000108. https://doi.org/10.1002/adsu.202000101

  133. Sircar S, Kratz WC (1981) Removal of water and carbon dioxide from air, US

  134. Rege SU, Yang RT, Buzanowski MA (2000) Sorbents for air prepurification in air separation. Chem Eng Sci 55:4827–4838. https://doi.org/10.1016/S0009-2509(00)00122-6

  135. Grajciar L, Cejka J, Zukal A, Arean CO, Palomino GT, Nachtigall P (2012) Controlling the adsorption enthalpy of CO2 in zeolites by framework topology and composition. CHEMSUSCHEM 5:2011–2022. https://doi.org/10.1002/cssc.201200270

  136. Yang JF, Li JM, Wang W, Li LB, Li JP (2013) Adsorption of CO2, CH4, and N2 on 8-, 10-, and 12-membered ring hydrophobic microporous high-silica zeolites: DDR, silicalite-1, and beta. Ind Eng Chem Res 52:17856–17864. https://doi.org/10.1021/ie403217n

  137. Kumar S, Srivastava R, Koh J (2020) Utilization of zeolites as CO2 capturing agents: advances and future perspectives. J CO2 Util 41. https://doi.org/10.1016/j.jcou.2020.101251

  138. Oschatz M, Antonietti M (2018) A search for selectivity to enable CO2 capture with porous adsorbents. Energ Environ Sci 11:57–70. https://doi.org/10.1039/c7ee02110k

  139. Xu X, Song C, Miller BG, Scaroni AW (2017) Influence of moisture on CO2 separation from gas mixture by a nanoporous adsorbent based on polyethylenimine-modified molecular sieve MCM-41. Ind Eng Chem Res 44:8113–8119. https://doi.org/10.1021/ie050382n

  140. Stuckert NR, Yang RT (2011) CO2 capture from the atmosphere and simultaneous concentration using zeolites and amine-grafted SBA-15. Environ Sci Technol 45:10257–10264. https://doi.org/10.1021/es202647a

  141. Wilson SMW, Tezel FH (2020) Direct dry air capture of CO2 using VTSA with faujasite zeolites. Ind Eng Chem Res 59:8783–8794. https://doi.org/10.1021/acs.iecr.9b04803

  142. Lee SC, Hsieh CC, Chen CH, Chen YS (2013) CO2 adsorption by Y-type zeolite impregnated with amines in indoor air. Aerosol Air Qual Res 13:360–366. https://doi.org/10.4209/aaqr.2012.05.0134

  143. Thakkar H, Issa A, Rownaghi AA, Rezaei F (2017) CO2 capture from air using amine-functionalized kaolin-based zeolites. Chem Eng Technol 40:1999–2007. https://doi.org/10.1002/ceat.201700188

  144. Kolle JM, Fayaz M, Sayari A (2021) Understanding the effect of water on CO2 adsorption. Chem Rev 121:7280–7345. https://doi.org/10.1021/acs.chemrev.0c00762

  145. Chuanwen Z, Xiaoping C, Changsui Z (2009) CO2 absorption using dry potassium-based sorbents with different supports. Energ Fuel 23:4683–4687. https://doi.org/10.1021/ef900182d

    Article  CAS  Google Scholar 

  146. Liang Y, Harrison DP, Gupta RP, Green DA, McMichael WJ (2004) Carbon dioxide capture using dry sodium-based sorbents. Energ Fuel 18:569–575. https://doi.org/10.1021/ef030158f

  147. Shigemoto N, Yanagihara T, Sugiyama S, Hayashi H (2006) Material balance and energy consumption for CO2 recovery from moist flue gas employing K2CO3-on-activated carbon and its evaluation for practical adaptation. Energ Fuel 20:721–726. https://doi.org/10.1021/ef058027x

  148. Zhao CW, Chen XP, Zhao CS (2011) Carbonation and active-component-distribution behaviors of several potassium-based sorbents. Ind Eng Chem Res 50:4464–4470. https://doi.org/10.1021/ie200153c

  149. Lee SC, Choi BY, Ryu CK, Ahn YS, Lee TJ, Kim JC (2006) The effect of water on the activation and the CO2 capture capacities of alkali metal-based sorbents. Korean J Chem Eng 23:374–379. https://doi.org/10.1007/BF02706737

  150. Zhao CW, Guo YF, Li CH, Lu SX (2014) Removal of low concentration CO2 at ambient temperature using several potassium-based sorbents. Appl Energ 124:241–247. https://doi.org/10.1016/j.apenergy.2014.02.054

  151. Veselovskaya JV, Derevschikov VS, Kardash TY, Stonkus OA, Trubitsina TA, Okunev AG (2013) Direct CO2 capture from ambient air using K2CO3/Al2O3 composite sorbent. Int J Greenh Gas Con 17:332–340. https://doi.org/10.1016/j.ijggc.2013.05.006

  152. Veselovskaya JV, Parunin PD, Netskina OV, Kibis LS, Lysikov AI, Okunev AG (2018) Catalytic methanation of carbon dioxide captured from ambient air. Energy 159:766–773. https://doi.org/10.1016/j.energy.2018.06.180

  153. Veselovskaya JV, Parunin PD, Netskina OV, Okunev AG (2018) A novel process for renewable methane production: combining direct air capture by K2CO3/alumina sorbent with CO2 methanation over Ru/alumina catalyst. Top Catal 61:1528–1536. https://doi.org/10.1007/s11244-018-0997-z

  154. Veselovskaya JV, Lysikov AI, Netskina OV, Kuleshov DV, Okunev AG (2020) K2CO3-containing composite sorbents based on thermally modified alumina: synthesis, properties, and potential application in a direct air capture/methanation process. Ind Eng Chem Res 59:7130–7139. https://doi.org/10.1021/acs.iecr.9b05457

  155. Derevschikov VS, Lysikov Al, Okunev AG (2011) High temperature CaO/Y2O3 carbon dioxide absorbent with enhanced stability for sorption-enhanced reforming applications. Ind Eng Chem Res 50:12741–12749. https://doi.org/10.1021/ie2015334

  156. Derevschikov VS, Veselovskaya JV, Kardash TY, Trubitsyn DA, Okunev AG (2014) Direct CO2 capture from ambient air using K2CO3/Y2O3 composite sorbent. Fuel 127:212–218. https://doi.org/10.1016/j.fuel.2013.09.060

  157. Lee SC, Bo YC, Chong KR, Ahn YS, Kim JC (2006) The effect of water on the activation and the CO2 capture capacities of alkali metal-based sorbents. Korean J Chem Eng 23:374–379. https://doi.org/10.1007/BF02706737

  158. Lee SC, Bo YC, Lee TJ, Chong KR, Ahn YS, Kim JC (2006) CO2 absorption and regeneration of alkali metal-based solid sorbents. Catal Today 111:385–390. https://doi.org/10.1016/j.cattod.2005.10.051

  159. Zhao CW, Guo YF, Li CH, Lu SX (2014) Carbonation behavior of K2CO3/AC in low reaction temperature and CO2 concentration. Chem Eng J 254:524–530. https://doi.org/10.1016/j.cej.2014.05.062

  160. Rodriguez-Mosqueda R, Bramer EA, Roestenberg T, Brem G (2018) Parametrical study on CO2 capture from ambient air using hydrated K2CO3 supported on an activated carbon honeycomb. Int Eng Chem Res 57:3628–3638. https://doi.org/10.1021/acs.iecr.8b00566

  161. Veselovskaya JV, Derevschikov VS, Shalygin AS, Yatsenko DA (2021) K2CO3-containing composite sorbents based on a ZrO2 aerogel for reversible CO2 capture from ambient air. Micropor Mesopor Mat 310:110624–110632. https://doi.org/10.1016/j.micromeso.2020.110624

  162. Cai T, Johnson JK, Wu Y, Chen X (2019) Toward understanding the kinetics of CO2 capture on sodium carbonate. ACS Appl Mater Inter 11:9033–9041. https://doi.org/10.1021/acsami.8b20000

  163. Rodríguez-Mosqueda R, Bramer EA, Brem G (2018) CO2 capture from ambient air using hydrated Na2CO3 supported on activated carbon honeycombs with application to CO2 enrichment in greenhouses. Chem Eng Sci 189:114–122. https://doi.org/10.1016/j.ces.2018.05.043

  164. Du Y, Yuan Y, Rochelle GT (2017) Volatility of amines for CO2 capture. Int J Greenh Gas Con 58:1–9. https://doi.org/10.1016/j.ijggc.2017.01.001

  165. Chao KJ, Klinthong W, Tan CS (2013) CO2 adsorption ability and thermal stability of amines supported on mesoporous silica SBA-15 and fumed silica. J Chin Chem Soc-Taip 60:735–744. https://doi.org/10.1002/jccs.201200507

  166. Zhang GJ, Zhao PY, Xu Y (2017) Development of amine-functionalized hierarchically porous silica for CO2 capture. J Ind Eng Chem 54:59–68. https://doi.org/10.1016/j.jiec.2017.05.018

  167. Zhang SQ, Chen C, Ahn W (2019) Recent progress on CO2 capture using amine-functionalized silica. Cur Opin Green Sust 16:26–32. https://doi.org/10.1016/j.cogsc.2018.11.011

  168. Chen QJ, Wang SY, Rout KR, Chen D (2021) Development of polyethylenimine (PEI)-impregnated mesoporous carbon spheres for low-concentration CO2 capture. Catal Today 369:69–76. https://doi.org/10.1016/j.cattod.2020.06.016

  169. Goeppert A, Czaun M, May RB, Prakash GK, Olah GA, Narayanan SR (2011) Carbon dioxide capture from the air using a polyamine based regenerable solid adsorbent. J Am Chem Soc 133:20164–20167. https://doi.org/10.1021/ja2100005

  170. Wijesiri RP, Knowles GP, Yeasmin H, Hoadley AFA, Chaffee AL (2019) CO2 capture from air using pelletized polyethylenimine impregnated MCF silica. Ind Eng Chem Res 58:3293–3303. https://doi.org/10.1021/acs.iecr.8b04973

    Article  CAS  Google Scholar 

  171. Kwon HT, Sakwa-Novak MA, Pang SH, Sujan AR, Ping EW, Jones CW (2019) Aminopolymer-impregnated hierarchical silica structures: unexpected equivalent CO2 uptake under simulated air capture and flue gas capture conditions. Chem Mater 31:5229–5237. https://doi.org/10.1021/acs.chemmater.9b01474

  172. Chaikittisilp W, Lunn JD, Shantz DF, Jones CW (2011) Poly(L-lysine) brush-mesoporous silica hybrid material as a biomolecule-based adsorbent for CO2 capture from simulated flue gas and air. Chem-Eur J 17:10556–10561. https://doi.org/10.1002/chem.201101480

  173. Choi S, Drese JH, Eisenberger PM, Jones CW (2011) Application of amine-tethered solid sorbents for direct CO2 capture from the ambient air. Environ Sci Technol 45:2420–2427. https://doi.org/10.1021/es102797w

  174. Kong Y, Jiang GD, Wu Y, Cui S, Shen XD (2016) Amine hybrid aerogel for high-efficiency CO2 capture: effect of amine loading and CO2 concentration. Chem Eng J 306:362–368. https://doi.org/10.1016/j.cej.2016.07.092

  175. Liu LN, Chen J, Tao L, Li H, Yang QH (2020) Aminopolymer confined in ethane‐silica nanotubes for CO2 capture from ambient air. Chem Nano Mat 6:1096–1103. https://doi.org/10.1002/cnma.201900742

  176. Heydari-Gorji A, Sayari A (2012) Thermal, oxidative, and CO2-induced degradation of supported polyethylenimine adsorbents. Ind Eng Chem Res 51:6887–6894. https://doi.org/10.1021/ie3003446

  177. Calleja G, Sanz R, Arencibia A, Sanz-Pérez ES (2011) Influence of drying conditions on amine-functionalized SBA-15 as adsorbent of CO2. Top Catal 54:135–145. https://doi.org/10.1007/s11244-011-9652-7

  178. Wang JT, Wang M, Li WC, Qiao WM, Long DH, Ling LC (2015) Application of polyethylenimine-impregnated solid adsorbents for direct capture of low-concentration CO2. AIChE J 61:972–980. https://doi.org/10.1002/aic.14679

  179. Pang SH, Lively RP, Jones CW (2018) Oxidatively-stable linear poly(propylenimine)-containing adsorbents for CO2 capture from ultradilute streams. CHEMSUSCHEM 11:2628–2637. https://doi.org/10.1002/cssc.201800438

  180. Sayari A, Belmabkhout Y (2010) Stabilization of amine-containing CO2 adsorbents: Dramatic effect of water vapor. J Am Chem Soc 132:6312–6314. https://doi.org/10.1021/ja1013773

  181. Lee JJ, Chen CH, Shimon D, Hayes SE, Sievers C, Jones CW (2017) Effect of humidity on the CO2 adsorption of tertiary amine grafted SBA-15. J Phys Chem C 121:23480–23487. https://doi.org/10.1021/acs.jpcc.7b07930

  182. Kumar DR, Rosu C, Sujan AR, Sakwa-Novak MA, Ping EW, Jones CW (2020) Alkyl-aryl amine-rich molecules for CO2 removal via direct air capture. ACS Sustain Chem Eng 8:10971–10982. https://doi.org/10.1021/acssuschemeng.0c03706

  183. Sakwa-Novak MA, Tan S, Jones CW (2015) Role of additives in composite PEI/oxide CO2 adsorbents: enhancement in the amine efficiency of supported PEI by PEG in CO2 capture from simulated ambient air. ACS Appl Mater Inter 7:24748–24759. https://doi.org/10.1021/acsami.5b07545

  184. Zhang L, Wang XX, Fujii M, Yang LJ, Song CS (2017) CO2 capture over molecular basket sorbents: effects of SiO2 supports and PEG additive. J Energy Chem 26:1030–1038. https://doi.org/10.1016/j.jechem.2017.09.002

  185. Choi S, Gray ML, Jones CW (2011) Amine-tethered solid adsorbents coupling high adsorption capacity and regenerability for CO2 capture from ambient air. CHEMSUSCHEM 4:628–635. https://doi.org/10.1002/cssc.201000355

  186. Goeppert A, Zhang H, Sen R, Dang H, Prakash GKS (2019) Oxidation-resistant, cost-effective epoxide-modified polyamine adsorbents for CO2 capture from various sources including air. CHEMSUSCHEM 12:1712–1723. https://doi.org/10.1002/cssc.201802978

  187. Alba MD, Luan ZH, Klinowski J (1996) Titanosilicate mesoporous molecular sieve MCM-41: synthesis and characterization. J Phys Chem 100:2178–2182. https://doi.org/10.1021/jp9515895

  188. Yasutaka K, Kazuto N, Takahito N, Takashi K, Kohsuke M, Hiromi Y (2011) Enhanced catalytic activity on titanosilicate molecular sieves controlled by cation-π interactions. J Am Chem Soc 133:12462–12465. https://doi.org/10.1021/ja205699d

  189. Kuwahara Y, Kang DY, Copeland JR, Brunelli NA, Didas SA, Bollini P, Sievers C, Kamegawa T, Yamashita H, Jones CW (2012) Dramatic enhancement of CO2 uptake by poly(ethyleneimine) using zirconosilicate supports. J Am Chem Soc 134:10757–10760. https://doi.org/10.1021/ja303136e

  190. Sculley JP, Zhou HC (2012) Enhancing amine-supported materials for ambient air capture. Angew Chem Int Edit 51:12660–12661. https://doi.org/10.1002/anie.201207495

  191. Saraladevi A, Thomas D, Amma SR, George BK (2015) Functionalized polysilsesquioxane-based hybrid silica solid amine sorbents for the regenerative removal of CO2 from air. ACS Appl Mater Inter 7:17969–17976. https://doi.org/10.1021/acsami.5b04674

  192. Nikulshina V, Gebald C, Steinfeld A (2009) CO2 capture from atmospheric air via consecutive CaO-carbonation and CaCO3-calcination cycles in a fluidized-bed solar reactor. Chem Eng J 146:244–248. https://doi.org/10.1016/j.cej.2008.06.005

  193. Ounoughene G, Buskens E, Santos RM, Cizer O, Van Gerven T (2018) Solvochemical carbonation of lime using ethanol: mechanism and enhancement for direct atmospheric CO2 capture. J CO2 Util 26:143–151. https://doi.org/10.1016/j.jcou.2018.04.024

  194. Kapica-Kozar J, Kusiak-Nejman E, Wanag A, Kowalczyk L, Wrobel RJ, Mozia S, Morawski AW (2015) Alkali-treated titanium dioxide as adsorbent for CO2 capture from air. Micropor Mesopor Mat 202:241–249. https://doi.org/10.1016/j.micromeso.2014.10.013

  195. Zhu XC, Ge TS, Yang F, Lyu M, Chen CP, O'Hare D, Wang RZ (2020) Efficient CO2 capture from ambient air with amine-functionalized Mg–Al mixed metal oxides. J Mater Chem A 8:16421–16428. https://doi.org/10.1039/d0ta05079b

  196. Zhu XC, Lyu M, Ge TS, Wu JY, Chen CP, Yang F, O'Hare D, Wang RZ (2021) Modified layered double hydroxides for efficient and reversible carbon dioxide capture from air. Cell Rep Phys Sci 2:100484–100479. https://doi.org/10.1016/j.xcrp.2021.100484

  197. Jeong-Potter C, Farrauto R (2021) Feasibility study of combining direct air capture of CO2 and methanation at isothermal conditions with dual function materials. Appl Catal B-Environ 282:119416–119423. https://doi.org/10.1016/j.apcatb.2020.119416

  198. Giacomin CE, Holm T, Mérida W (2020) CaCO3 growth in conditions used for direct air capture. Powder Technol 370:39–47. https://doi.org/10.1016/j.powtec.2020.05.018

  199. McQueen N, Kelemen P, Dipple G, Renforth P, Wilcox J (2020) Ambient weathering of magnesium oxide for CO2 removal from air. Nat Commun 11:3299–3308. https://doi.org/10.1038/s41467-020-16510-3

  200. Zeman F (2014) Reducing the cost of Ca-based direct air capture of CO2. Environ Sci Technol 48:11730–11735. https://doi.org/10.1021/es502887y

  201. Samari M, Ridha F, Manovic V, Macchi A, Anthony EJ (2019) Direct capture of carbon dioxide from air via lime-based sorbents. Mitig Adapt Strat Gl 25:25–41. https://doi.org/10.1007/s11027-019-9845-0

  202. Erans M, Nabavi SA, Manović V (2020) Carbonation of lime-based materials under ambient conditions for direct air capture. Clean Prod 242:118330–118337. https://doi.org/10.1016/j.jclepro.2019.118330

  203. Yanase I, Onozawa S, Ohashi Y, Takeuchi T (2019) CO2 capture from ambient air by β-NaFeO2 in the presence of water vapor at 25–100 °C. Powder Technol 348:43–50. https://doi.org/10.1016/j.powtec.2019.02.028

  204. Yong Z, Rodrigues AE (2002) Hydrotalcite-like compounds as adsorbents for carbon dioxide. Energy Conv Manag 43:1865–1876. https://doi.org/10.1016/S0196-8904(01)00125-X

  205. Roman MSS, Holgado MJ, Jaubertie C, Rives V (2008) Synthesis, characterisation and delamination behaviour of lactate-intercalated Mg,Al-hydrotalcite-like compounds. Solid State Sci 10:1333–1341. https://doi.org/10.1016/j.solidstatesciences.2008.01.026

  206. Zhu XC, Ge TS, Yang F, Wang RZ (2021) Design of steam-assisted temperature vacuum-swing adsorption processes for efficient CO2 capture from ambient air. Renew Sust Energ Rev 137:110651–110662. https://doi.org/10.1016/j.rser.2020.110651

  207. Azarabadi H, Lackner KS (2019) A sorbent-focused techno-economic analysis of direct air capture. Appl Energ 250:959–975. https://doi.org/10.1016/j.apenergy.2019.04.012

  208. Xiao H, Shi XY, Zhang YY, Liao XB, Hao F, Lackner KS, Chen X (2017) The catalytic effect of H2O on the hydrolysis of CO32- in hydrated clusters and its implication in the humidity driven CO2 air capture. Phys Chem Chem Phys 19:27435–27441. https://doi.org/10.1039/C7CP04218C

  209. Yang H, Singh M, Schaefer J (2018) Humidity-swing mechanism for CO2 capture from ambient air. Chem Commun 54:4915–4918. https://doi.org/10.1039/c8cc02109k

  210. Wang T, Lackner KS, Wright A (2011) Moisture swing sorbent for carbon dioxide capture from ambient air. Environ Sci Technol 45:6670–6675. https://doi.org/10.1021/es201180v

  211. Wang T, Lackner KS, Wright AB (2013) Moisture-swing sorption for carbon dioxide capture from ambient air: a thermodynamic analysis. Phys Chem Chem Phys 15:504–514. https://doi.org/10.1039/c2cp43124f

  212. Tao W, Liu J, Lackner KS, Shi X, Luo Z (2016) Characterization of kinetic limitations to atmospheric CO2 capture by solid sorbent. Greenh Gases 6:138–149. https://doi.org/10.1002/ghg.1535

  213. Wang T, Liu J, Huang H, Fang MX, Luo ZY (2016) Preparation and kinetics of a heterogeneous sorbent for CO2 capture from the atmosphere. Chem Eng J 284:679–686. https://doi.org/10.1016/j.cej.2015.09.009

  214. Chen HB, Hollinger E, Wang YZ, Schiraldi DA (2014) Facile fabrication of poly(vinyl alcohol) gels and derivative aerogels. Polymer 55:380–384. https://doi.org/10.1016/j.polymer.2013.07.078

  215. Armstrong M, Shi XY, Shan BH, Lackner K, Mu B (2019) Rapid CO2 capture from ambient air by sorbent-containing porous electrospun fibers made with the solvothermal polymer additive removal technique. AIChE J 65:214–220. https://doi.org/10.1002/aic.16418

  216. Song JZ, Zhu LL, Shi XY, Liu YL, Xiao H, Chen X (2019) Moisture swing ion-exchange resin-PO4 sorbent for reversible CO2 capture from ambient air. Energ Fuel 33:6562–6567. https://doi.org/10.1021/acs.energyfuels.9b00863

  217. Song JZ, Liu J, Zhao W, Chen Y, Xiao H, Shi XY, Liu YL, Chen X (2018) Quaternized chitosan/PVA aerogels for reversible CO2 capture from ambient air. Ind Eng Chem Res 57:4941–4948. https://doi.org/10.1021/acs.iecr.8b00064

    Article  CAS  Google Scholar 

  218. He HK, Li WW, Zhong MJ, Konkolewicz D, Wu DC, Yaccato K, Rappold T, Sugar G, David NE, Matyjaszewski K (2012) Reversible CO2 capture with porous polymers using the humidity swing. Energ Environ Sci 6:488–493. https://doi.org/10.1039/c2ee24139k

  219. He HK, Li WW, Lamson M, Zhong MJ, Konkolewicz D, Hui CM, Yaccato K, Rappold T, Sugar G, David NE, Damodaran K, Natesakhawat S, Nulwala H, Matyjaszewski K (2014) Porous polymers prepared via high internal phase emulsion polymerization for reversible CO2 capture. Polymer 55:385–394. https://doi.org/10.1016/j.polymer.2013.08.002

  220. Hou CL, Wu YS, Wang T, Wang XR, Gao X (2018) Preparation of quaternized bamboo cellulose and its implication in direct air capture of CO2. Energ Fuel 33:1745–1752. https://doi.org/10.1021/acs.energyfuels.8b02821

  221. Shi X, Xiao H, Lackner KS, Chen X (2016) Capture CO2 from ambient air using nanoconfined ion hydration. Angew Chem Int Edit 55:4026–4029. https://doi.org/10.1002/anie.201507846

  222. Goeppert A, Czaun M, Surya Prakash GK, Olah GA (2012) Air as the renewable carbon source of the future: an overview of CO2 capture from the atmosphere. Energ Environ Sci 5:7833–7853. https://doi.org/10.1039/c2ee21586a

  223. National Academies of Sciences, Engineering, and Medicine (2018) Negative emissions technologies and reliable sequestration: a research agenda. https://nap.nationalacademies.org/catalog/25259

  224. Kulkarni AR, Sholl DS (2012) Analysis of equilibrium-based TSA processes for direct capture of CO2 from air. Ind Eng Chem Res 51:8631–8645. https://doi.org/10.1021/ie300691c

  225. Sinha A, Darunte LA, Jones CW, Realff MJ, Kawajiri Y (2017) Systems design and economic analysis of direct air capture of CO2 through temperature vacuum swing adsorption using MIL-101(Cr)-PEI-800 and mmen-Mg2(dobpdc) MOF adsorbents. Ind Eng Chem Res 56:750–764. https://doi.org/10.1021/acs.iecr.6b03887

    Article  CAS  Google Scholar 

  226. Sabatino F, Grimm A, Gallucci F, van Sint Annaland M, Kramer GJ, Gazzani M (2021) A comparative energy and costs assessment and optimization for direct air capture technologies. Joule 5:2047–2076. https://doi.org/10.1016/j.joule.2021.05.023

  227. McQueen N, Gomes K V, McCormick C, Blumanthal K, Pisciotta M, Wilcox J (2021) A review of direct air capture (DAC): scaling up commercial technologies and innovating for the future. Prog Energy 3:032001–032022. https://doi.org/10.1088/2516-1083/abf1ce

  228. Cuccia L, Dugay J, Domitille B, Louis-Louisy M, Vial J (2018) Analytical methods for the monitoring of post-combustion CO2 capture process using amine solvents: A review. Int J Greenh Gas Con 72:138–151. https://doi.org/10.1016/j.ijggc.2018.03.014

  229. Rost S, Gerten D, Bondeau A, Lucht W, Rohwer J, Schaphoff S (2008) Agricultural green and blue water consumption and its influence on the global water system. Water Resour Res 44:W09405–W09421. https://doi.org/10.1029/2007wr006331

Download references

Acknowledgements

The authors are very grateful to the National Natural Science Foundation of China (21868015, 51802135), and the Applied Basic Research Programs of Yunnan Province (140520210057). which funded this study. The authors extend their appreciation to the Deputyship for Research& Innovation, Ministry of Education in Saudi Arabia for funding this research work through the project number “IF_2020_NBU_321.”

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Ping Ning or Zhanhu Guo.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, J., Fu, R., Wen, S. et al. Progress and current challenges for CO2 capture materials from ambient air. Adv Compos Hybrid Mater 5, 2721–2759 (2022). https://doi.org/10.1007/s42114-022-00567-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s42114-022-00567-3

Keywords

Navigation