Skip to main content

Advertisement

Log in

Evaluation and comparison of GFRP casing and CFRP sheets application on the behavior of circular reinforced concrete column made of high-strength concrete

  • Original Paper
  • Published:
Asian Journal of Civil Engineering Aims and scope Submit manuscript

Abstract

This paper presents the results of axial compression testing on reinforced concrete columns (RCC) made with high-strength concrete (HSC) and confined by glass fiber-reinforced plastic (GFRP) casing and carbon fiber-reinforced polymer (CFRP). The major parameters evaluated in the experiments were the effects of GFRP casing, CFRP wrapping, and the number of CFRP layers. In this study, six cylindrical HSC-reinforced concrete columns (150 mm diameter and 600 mm height) were prepared and divided into two groups; with and without GFRP casing. In each group, one column was without CFRP, a column was wrapped with one CFRP layer, and another column with two CFRP layers. Concrete compressive strength was 63.1 MPa. All columns were tested under concentrated compression load. Results indicated that the utilization of CFRP wrapping and GFRP casing improved compression capacity and ductility of reinforced concrete columns. The addition of one and two CFRP layer wrapping increased compression capacity to an average of 10.2% and 24.8%, respectively; while the utilization of GFRP casing increased the compression capacity of the HSC columns by 3.38 times. These results indicate that although both CFRP wrapping and GFRP casing resulted in confinement, the GFRP casing has a higher effect on increased compression capacity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  • ACI Committee 211. (1991). Standard practice for selecting proportions for normal, heavyweight and mass concrete (reapproved 2009). Farmington hills: ACI Committee.

    Google Scholar 

  • ACI Committee 440. (2008). Guide for the design and construction of externally bonded frp systems for strengthening concrete structures. Farmington hills: ACI Committee 440.

    Google Scholar 

  • Almusallam, T. H. (2007). Behavior of normal and high-strength concrete cylinders confined with E-glass/epoxy composite laminates. Composites: Part B, 38, 629–639.

    Article  Google Scholar 

  • ASTM. (2001). D2996-01, standard specification for filament-wound fiberglass (glass-fiber-reinforced thermosetting-resin) pipe. Washington: ASTM Committee.

    Google Scholar 

  • ASTM. (2002). D638-02, standard test method for tensile properties of plastics. Washington: ASTM International.

    Google Scholar 

  • ASTM. (2010). D7565/D7565M-10, standard test method for determining tensile properties of fiber reinforced polymer matrix composites used for strengthening of civil structures. Washington: ASTM International.

    Google Scholar 

  • ASTM. (2011). A1035/A1035M-11, standard specification for deformed and plain, low-carbon, chromium, steel bars for concrete reinforcement. Washington: ASTM International.

    Google Scholar 

  • ASTM. (2018). C33/C33M-18, standard specification for concrete aggregates. Washington: ASTM International.

    Google Scholar 

  • Chikh, N., Gahmous, M., & Benzaid, R. (2012). Structural performance of high strength concrete columns confined with CFRP sheets. In Proceedings of the World Congress on Engineering, vol. 3, London, UK.

  • Constantinescu, H., Gherman, O., Negrutiu, C., & Pavel Ioan, S. (2016). Mechanical properties of hardened high strength concrete. Procedia Technology, 22, 219–226.

    Article  Google Scholar 

  • Dong, C. X., Wan, A. K. H. K., & Ho, J. C. M. (2015). A constitutive model for predicting the lateral strain of confined concrete. Engineering Structures, 91, 155–166.

    Article  Google Scholar 

  • Dundar, C., Erturkmen, D., & Tokgoz, S. (2015). Studies on carbon fiber polymer confined slender plain and steel fiber reinforced concrete columns. Engineering Structures, 102, 31–39.

    Article  Google Scholar 

  • Fallah Pour, A., Ozbakkaloglu, T., & Vincent, T. (2018). Simplified design-oriented axial stress-strain model for FRP-confined normal- and high-strength concrete. Engineering Structures, 175, 501–516.

    Article  Google Scholar 

  • Hadi, M. N. S. (2006). Comparative study of eccentrically loaded FRP wrapped columns. Composite Structures, 74, 127–135.

    Article  Google Scholar 

  • Hadi, M. N. S. (2007a). Behavior of FRP strengthened concrete columns under eccentric compression loading. Composites Structure, 77, 92–96.

    Article  Google Scholar 

  • Hadi, M. N. S. (2007b). The behavior of FRP wrapped HSC columns under different eccentric loads. Composites Structure, 78, 560–566.

    Article  Google Scholar 

  • Hadi, M. N. S., Wang, W., & Sheikh, M. N. (2015). Axial compressive behavior of GFRP casing reinforced concrete columns. Construction and Building Materials, 81, 198–207.

    Article  Google Scholar 

  • Hung, C. C., & Hu, F. Y. (2018). Behavior of high-strength concrete slender columns strengthened with steel fibers under concentric axial loading. Construction and Building Materials, 175, 422–433.

    Article  Google Scholar 

  • Ichinose, L. H., Watanabe, E., & Nakai, H. (2001). An experimental study on creep of concrete filled steel pipes. Journal of Constructional Steel Research, 57, 453–466.

    Article  Google Scholar 

  • Karbhari, V. M., & Gao, Y. (1997). Composite jacketed concrete under uniaxial compression verification of simple design equations. Journal of Materials in Civil Engineering, 9(4), 185–193.

    Article  Google Scholar 

  • Kumutha, R., Vaidyanathan, R., & Palanichamy, M. S. (2007). Behaviour of reinforced concrete rectangular columns strengthened using GFRP. Cement and Concrete Composites, 29, 609–615.

    Article  Google Scholar 

  • Lim, J. C., & Ozbakkaloglu, T. (2013). Confinement model for FRP-confined high-strength concrete. Journal of composites for construction, 18(4), 04013058.

    Article  Google Scholar 

  • Lim, J. C., & Ozbakkaloglu, T. (2014a). Lateral strain-to-axial strain relationship of confined concrete. Journal of Structural Engineering. https://doi.org/10.1061/(ASCE)ST.1943-541X.0001094.

    Article  Google Scholar 

  • Lim, J. C., & Ozbakkaloglu, T. (2014b). Influence of silica fume on stress–strain behavior of FRP-confined HSC. Construction and Building Materials, 63, 11–24.

    Article  Google Scholar 

  • Louk Fanggi, B. A., & Ozbakkaloglu, T. (2016). Behavior of hollow and concrete-filled FRP-HSC and FRP-HSC-steel composite columns subjected to concentric compression. Advances in Structural Engineering, 18(5), 715–738.

    Article  Google Scholar 

  • Maaddawy, T. E., Sayed, M. E., & Abdel-Magid, B. (2010). The effects of cross-sectional shape and loading condition on performance of reinforced concrete members confined with carbon fiber-reinforced polymers. Materials and Design, 31, 2330–2341.

    Article  Google Scholar 

  • Naguib, W., & Mirmiran, A. (2002). Time-dependent behavior of fiber-reinforced polymer confined concrete columns under axial loads. ACI Structural Journal, 99(2), 142–148.

    Google Scholar 

  • Ozbakkaloglu, T. (2013a). Compressive behavior of concrete-filled FRP tube columns: Assessment of critical column parameters. Engineering Structures, 51, 188–199.

    Article  Google Scholar 

  • Ozbakkaloglu, T. (2013b). Concrete-filled FRP tubes: manufacture and testing of new forms designed for improved performance. Journal of Composites for Construction, 17(2), 280–291.

    Article  Google Scholar 

  • Ozbakkaloglu, T. (2013c). Axial compressive behavior of square and rectangular high strength concrete-filled FRP tubes. Journal of Composites for Construction, 17(1), 151–161.

    Article  Google Scholar 

  • Ozbakkaloglu, T. A. (2015). A novel FRP-dual-grade concrete-steel composite column system. Thin-Walled Structures, 96, 295–306.

    Article  Google Scholar 

  • Ozbakkaloglu, T., & Akin, E. (2011). Behavior of FRP-confined normal- and high-strength concrete under cyclic axial compression. Journal of Composites for Construction, 16(4), 451–463.

    Article  Google Scholar 

  • Ozbakkaloglu, T., & Lim, J. C. (2013). Axial compressive behavior of FRP-confined concrete: Experimental test database and a new design-oriented model. Composites Part B, 55, 607–634.

    Article  Google Scholar 

  • Ozbakkaloglu, T., Lim, J. C., & Vincent, T. (2013). FRP-confined concrete in circular sections: review and assessment of stress–strain models. Engineering Structures, 49, 1068–1088.

    Article  Google Scholar 

  • Ozbakkaloglu, T., & Oehlers, D. J. (2008a). Manufacture and testing of a novel FRP tube confinement system. Engineering Structures, 30, 2448–2459.

    Article  Google Scholar 

  • Ozbakkaloglu, T., & Oehlers, D. J. (2008b). Concrete-filled square and rectangular FRP tubes under axial compression. Journal of Composites for Construction, 12(4), 469–477.

    Article  Google Scholar 

  • Ozbakkaloglu, T., & Vincent, T. (2013). Axial compressive behavior of circular high strength concrete-filled FRP tubes. Journal of composites for construction, 18(2), 04013037.

    Article  Google Scholar 

  • Ozbakkaloglu, T., & Xie, T. (2016). Geo-polymer concrete-filled FRP casings: Behavior of circular and square columns under axial compression. Composites: Part B, 96, 215–230.

    Article  Google Scholar 

  • Park, J. H., Jo, B., Soon, S. J., & Park, S. K. (2011a). Experimental investigation on the structural behavior of concrete filled FRP tubes with/without steel rebar. KSCE Journal of Civil Engineering, 15(2), 337–345.

    Article  Google Scholar 

  • Park, J. H., Jo, B. W., Yoon, S. J., & Park, S. K. (2011b). Experimental investigation on the structural behavior of concrete filled FRP casings with/without steel rebar. KSCE Journal of Civil Engineering., 15(2), 337–345.

    Article  Google Scholar 

  • Parvin, A., & Jamwal, A. S. (2005). Effects of wrap thickness and ply configuration on composite-confined concrete cylinders. Composites Structure, 67(4), 437–442.

    Article  Google Scholar 

  • Rahai, A. R., Sadeghian, P., & Ehsani, M. R. (2008). Experimental behavior of concrete cylinders confined with CFRP composites. In The 14th World Conference on Earthquake Engineering, Beijing, China, October.

  • Shrestha, K. M., Chen, B. C., & Chen, Y. F. (2011). State of the art of creep of concrete filled steel tubular arches. KSCE Journal of Civil Engineering, 15(1), 145–151.

    Article  Google Scholar 

  • Tokgoz, S., Dundar, C., & Tanrikulu, A. K. (2012). Experimental behavior of steel fiber high strength reinforced concrete and composite columns. Journal of Constructional Steel Research, 74, 98–107.

    Article  Google Scholar 

  • Vincent, T., & Ozbakkaloglu, T. (2013a). Influence of fiber orientation and specimen end condition on axial compressive behavior of FRP-confined concrete. Construction and Building Materials, 47, 814–826.

    Article  Google Scholar 

  • Vincent, T., & Ozbakkaloglu, T. (2013b). Influence of concrete strength and confinement method on axial compressive behavior of FRP-confined high- and ultra-high strength concrete. Composites: Part B, 50, 413–428.

    Article  Google Scholar 

  • Vincent, T., & Ozbakkaloglu, T. (2015a). Influence of shrinkage on compressive behavior of concrete-filled FRP tubes: An experimental study on interface gap effect. Construction and Building Materials, 75, 144–156.

    Article  Google Scholar 

  • Vincent, T., & Ozbakkaloglu, T. (2015b). Compressive behavior of prestressed high-strength concrete-filled aramid FRP tube columns: experimental observations. Journal of Composites for Construction, 19(6), 04015003.

    Article  Google Scholar 

  • Wang, W., Sheikh, M. N., Hadi, M. N. S., Gao, D., & Chen, G. (2017). Behavior of concrete-encased concrete-filled FRP casing (CCFT) columns under axial compression. Engineering Structures, 147, 256–268.

    Article  Google Scholar 

  • Xiao, J., Huang, Y., Jie Yang, J., & Zhang, C. H. (2012). Mechanical properties of confined recycled aggregate concrete, under axial compression. Construction and Building Materials, 26, 591–603.

    Article  Google Scholar 

  • Xiao, J., Tresserras, J., & Tam, V. W. Y. (2014). GFRP-casing confined RAC under axial and eccentric loading with and without expansive agent. Construction and Building Materials, 73, 575–585.

    Article  Google Scholar 

  • Yang, Y. F., Han, L. H., & Wu, X. (2008). Concrete shrinkage and creep in recycled aggregate concrete-filled steel casings. Advances in Structural Engineering, 11(4), 383–396.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Fathollah Sajedi.

Ethics declarations

Conflict of interest

On behalf of all authors, corresponding author approve that there is no conflict of interest about the paper.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sajedi, F., Shafieinia, M. Evaluation and comparison of GFRP casing and CFRP sheets application on the behavior of circular reinforced concrete column made of high-strength concrete. Asian J Civ Eng 20, 1153–1161 (2019). https://doi.org/10.1007/s42107-019-00172-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s42107-019-00172-8

Keywords

Navigation