Skip to main content

Advertisement

Log in

Assessment of Catchment Behavior of the Wadi Louza in NW-Algeria Under Hydrological Drought Conditions

  • Original Article
  • Published:
Earth Systems and Environment Aims and scope Submit manuscript

Abstract

Climate-related droughts have become more common in many parts of the world in recent years, causing negative consequences for agriculture, the environment, and food security. The recent drought in northwestern Algeria’s semi-arid regions has had an impact on both water resource balance and agriculture, with hydrological processes being particularly badly affected and provided hydrological drought. The Wadi Louza basin is one of the drought-affected regions, as it is situated in an area with scarce water resources. Data from hydrological gauging stations for 28 years were used to investigate drought history. The aim of this study is to characterise and monitor the hydrological drought over different time periods (3, 6, 9, and 12 months) using the Streamflow Drought Index (SDI) index and to evaluate the behavior of the Wadi Louza catchment under drought conditions using a HBV-light hydrological model. The results show that the driest hydrological years were 1991–1993, and 2005–2006, and that a 12-month time scale was the most appropriate for developing an effective drought mitigation strategy. The HBV-light model generates a portion of the runoff in the lower soil zone that is predicted to be 15.30% of recharge, confirming that the Wadi Louza basin has been subjected to extreme droughts.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Notes

  1. IPCC: The Intergovernmental Panel on Climate Change.

  2. IFRC: The International Federation of Red Cross and Red Crescent Societies.

References

  • Almazroui M, Saeed F, Saeed S, Nazrul Islam M, Ismail M, Klutse NAB, Siddiqui MH (2020) Projected change in temperature and precipitation over Africa from CMIP6. Earth Syst Environ 4(3):455–475. https://doi.org/10.1007/s41748-020-00161-x

    Article  Google Scholar 

  • Almazroui M, Saeed F, Saeed S, Ismail M, Ehsan MA, Islam MN, Abid MA, O’Brien E, Kamil S, Rashid IU, Nadeem I (2021) Projected changes in climate extremes using CMIP6 simulations over SREX regions. Earth Syst Environ 5(3):481–497. https://doi.org/10.1007/s41748-021-00250-5

    Article  Google Scholar 

  • Barker LJ, Hannaford J, Chiverton A, Svensson C (2016) From meteorological to hydrological drought using standardised indicators. Hydrol Earth Syst Sci 20(6):2483–2505. https://doi.org/10.5194/hess-20-2483-2016

    Article  Google Scholar 

  • Bendjema L, Baba-Hamed K, Bouanani A (2019) Characterization of the climatic drought indices application to the Mellah catchment, North-East of Algeria. J Water Land Dev 43(1):28–40. https://doi.org/10.2478/jwld-2019-0060

    Article  Google Scholar 

  • Bergström S (1976) Development and application of a conceptual runoff model for Scandinavian catchments. Tech. Rep. RHO, 7, Swedish Meteorological and hydrological Institute (SMHI), Hydrology, Norrköping, p 134

  • Bergström S (1992) The HBV model-its structure and applications. Tech. Rep. RH No. 4, Swedish Meteorological and hydrological Institute (SMHI), Hydrology, Norrköping, p 35

  • Bhattarai S, Zhou Y, Shakya NM, Zhao C (2018) Hydrological modelling and climate change impact assessment using HBV light model: a case study of Narayani River Basin, Nepal. Nat Environ Pollut Technol 17(3):691–702

    Google Scholar 

  • Bhunia P, Das P, Maiti R (2020) Meteorological drought study through SPI in three drought prone Districts of West Bengal, India. Earth Syst Environ 4(1):43–55. https://doi.org/10.1007/s41748-019-00137-6

    Article  Google Scholar 

  • Bloomfield JP, Marchant BP (2013) Analysis of groundwater drought building on the standardised precipitation index approach. Hydrol Earth Syst Sci 17(12):4769–4787. https://doi.org/10.5194/hess-17-4769-2013

    Article  Google Scholar 

  • Bouabdelli S, Meddi M, Zeroual A, Alkama R (2020) Hydrological drought risk recurrence under climate change in the karst area of Northwestern Algeria. J Water Clim Change 11(S1):164–188. https://doi.org/10.2166/wcc.2020.207

    Article  Google Scholar 

  • Chelu A (2019) A typology of indices for drought assessment. In: Air and water—components of the environment, conference proceedings, Cluj-Napoca, Romania, pp 77–89. https://doi.org/10.24193/AWC2019_08

  • Cheng X, Ma X, Wang W, Xiao Y, Wang Q, Liu X (2021) Application of HEC-HMS parameter regionalization in small watershed of hilly area. Water Resour Manag 35(6):1961–1976. https://doi.org/10.1007/s11269-021-02823-5

    Article  Google Scholar 

  • Cramer W, Guiot J, Fader M, Garrabou J, Gattuso JP, Iglesias A, Lange MA, Lionello P, Llasat MC, Paz S, Peõuelas J, Snoussi M, Toreti A, Tsimplis MN, Xoplaki E (2018) Climate change and interconnected risks to sustainable development in the Mediterranean. Nat Clim Change 8(11):972–980. https://doi.org/10.1038/s41558-018-0299-2

    Article  Google Scholar 

  • Dance N (2012) Kajian Perubahan Karakteristik Hdirologi Daerah Aliran Sungai Cikapundung Hulu Menggunakan Model HBV96. B Eng Undergraduate Thesis Parahyangan Catholic University, Indonesia

  • Dayan U, Nissen K, Ulbrich U (2015) Review Article: Atmospheric conditions inducing extreme precipitation over the eastern and western Mediterranean. Nat Hazards Earth Syst Sci Discuss 15(11):2525–2544. https://doi.org/10.5194/nhess-15-2525-2015

    Article  Google Scholar 

  • Djellouli F, Bouanani A, Baba-Hamed K (2016) Efficiency of some meteorological drought indices in different time scales, case study: Wadi Louza basin (NW-Algeria). J Water Land Dev 31(1):33–41. https://doi.org/10.1515/jwld-2016-0034

    Article  Google Scholar 

  • Fleig AK, Tallaksen LM, Hisdal H, Hannah DM (2011) Regional hydrological drought in north-western Europe: linking a new Regional Drought Area Index with weather types. Hydrol Process 25(7):1163–1179. https://doi.org/10.1002/hyp.7644

    Article  Google Scholar 

  • Francos A, Elorza F, Bouraoui F, Bidoglio G, Galbiati L (2003) Sensitivity analysis of distributed environmental simulation models: understanding the model behaviour in hydrological studies at the catchment scale. Reliab Eng Syst Saf 79(2):205–218. https://doi.org/10.1016/S0951-8320(02)00231-4

    Article  Google Scholar 

  • Gidey E, Dikinya O, Sebego R, Segosebe E, Zenebe A (2018) Modeling the spatio-temporal meteorological drought characteristics using the Standardized Precipitation Index (SPI) in Raya and its environs, Northern Ethiopia. Earth Syst Environ 2(2):281–292. https://doi.org/10.1007/s41748-018-0057-7

    Article  Google Scholar 

  • Giuntoli I, Villarini G, Prudhomme C, Hannah DM (2018) Uncertainties in projected runoff over the conterminous United States. Clim Change 150(3):149–162. https://doi.org/10.1007/s10584-018-2280-5

    Article  Google Scholar 

  • Gustard A, Demuth S (2009) Manual on low-flow estimation and prediction. Operational Hydrology Report 50, WMO-No. 1029, p 136

  • Habibi B, Meddi M, Torfs PJ, Remaoun M, Van Lanen HA (2018) Characterisation and prediction of meteorological drought using stochastic models in the semi-arid Chéliff–Zahrez basin (Algeria). J Hydrol Reg Stud 16:15–31. https://doi.org/10.1016/j.ejrh.2018.02.005

    Article  Google Scholar 

  • Held IM, Soden BJ (2006) Robust responses of the hydrological cycle to global warming. J Clim 19(21):5686–5699. https://doi.org/10.1175/JCLI3990.1

    Article  Google Scholar 

  • IFRC (2020) World disasters report 2020: come heat or high water. International Federation of Red Cross and Red Crescent Societies, Geneva

    Google Scholar 

  • IPCC (2007) Climate change 2007: synthesis report. In: Pachauri RK, Reisinger A (eds) Contribution of Working Groups I, II and III to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change. Tech. rep., IPCC, Core Writing Team, p 104

  • IPCC (2014) Climate change 2014: synthesis report. In: Pachauri RK, Meyer LA (eds) Contribution of Working Groups I, II and III to the fifth assessment report of the Intergovernmental Panel on Climate Change. Tech. rep., IPCC, Geneva, Switzerland, Core Writing Team, p 151

  • IPCC (2019) Climate change and land: an IPCC special report on climate change, desertification, land degradation, sustainable land management, food security, and greenhouse gas fluxes in terrestrial ecosystems. In: IPCC, Shukla PR, Skea J, Calvo Buendia E, Masson-Delmotte V, Pörtner H-O, Roberts DC, Zhai P, Slade R, Connors S, van Diemen R, Ferrat M, Haughey E, Luz S, Neogi S, Pathak M, Petzold J, Portugal Pereira J, Vyas P, Huntley E, Kissick K, Belkacemi M, Malley J (eds) Tech. rep

  • Karl TR (1986) The sensitivity of the Palmer Drought Severity Index and Palmer’s Z-Index to their calibration coefficients including potential evapotranspiration. J Clim Appl Meteorol 25(1):77–86. https://doi.org/10.1175/1520-0450(1986)025<0077:TSOTPD>2.0.CO;2

    Article  Google Scholar 

  • Kubiak-Wójcicka K, Ba̧k B (2018) Monitoring of meteorological and hydrological droughts in the Vistula basin (Poland). Environ Monit Assess 190(11):691. https://doi.org/10.1007/s10661-018-7058-8

    Article  Google Scholar 

  • Li S, Xiong L, Dong L, Zhang J (2013) Effects of the three Gorges Reservoir on the hydrological droughts at the downstream Yichang station during 2003–2011. Hydrol Process 27(26):3981–3993. https://doi.org/10.1002/hyp.9541

    Article  Google Scholar 

  • Lindström G, Johansson B, Persson M, Gardelin M, Bergström S (1997) Development and test of the distributed HBV-96 hydrological model. J Hydrol 201(1–4):272–288. https://doi.org/10.1016/S0022-1694(97)00041-3

    Article  Google Scholar 

  • Ljubenkov I, Cindrić Kalin K (2016) Evaluation of drought using standardised precipitation and flow indices and their correlations on an example of Sinjsko polje. J Croat Assoc Civ Eng 68(2):135–143. https://doi.org/10.14256/JCE.1337.2015

    Article  Google Scholar 

  • Meddi M, Assani AA, Meddi H (2010) Temporal variability of annual rainfall in the Macta and Tafna catchments, Northwestern Algeria. Water Resour Manag 24(14):3817–3833. https://doi.org/10.1007/s11269-010-9635-7

    Article  Google Scholar 

  • Meddi M, Toumi S, Mehaiguene M (2013) Hydrological drought in Tafna basin-Algeria. In: Proceedings of the 13th international conference of environmental science and technology, Athens, Greece

  • Mendicino G, Senatore A, Versace P (2008) A Groundwater Resource Index (GRI) for drought monitoring and forecasting in a Mediterranean climate. J Hydrol 357(3–4):282–302. https://doi.org/10.1016/j.jhydrol.2008.05.005

    Article  Google Scholar 

  • Moatti JP, Thiébault S (2018) The Mediterranean region under climate change: a scientific update. IRD éditions. https://doi.org/10.4000/books.irdeditions.22908

  • Mustafa A, Rahman G (2018) Assessing the spatio-temporal variability of meteorological drought in Jordan. Earth Syst Environ 2(2):247–264. https://doi.org/10.1007/s41748-018-0071-9

    Article  Google Scholar 

  • Nalbantis I (2008) Evaluation of a hydrological drought index. Eur Water 23(24):67–77. http://www.ewra.net/ew/pdf/EW_2008_23-24_06.pdf

  • Nalbantis I, Tsakiris G (2009) Assessment of hydrological drought revisited. Water Resour Manag 23(5):881–897. https://doi.org/10.1007/s11269-008-9305-1

    Article  Google Scholar 

  • Nash JE, Sutcliffe JV (1970) River flow forecasting through conceptual models part I—a discussion of principles. J Hydrol 10(3):282–290. https://doi.org/10.1016/0022-1694(70)90255-6

    Article  Google Scholar 

  • Oudin L (2004) Recherche d’un modèle d’évapotranspiration potentielle pertinent comme entrée d’un modèle pluie-débit global. PhD thesis, ENGREF (AgroParisTech)

  • Perrin C (2000) Vers une amélioration d’un modèle global pluie-débit. PhD thesis, Institut National Polytechnique de Grenoble-INPG

  • Pinto JG, Ulbrich S, Parodi A, Rudari R, Boni G, Ulbrich U (2013) Identification and ranking of extraordinary rainfall events over Northwest Italy: the role of Atlantic moisture. J Geophys Res Atmos 118(5):2085–2097. https://doi.org/10.1002/jgrd.50179

    Article  Google Scholar 

  • Radchenko I, Breuer L, Forkutsa I, Frede HG (2014) Simulating water resource availability under data scarcity—a case study for the Ferghana Valley (Central Asia). Water 6(11):3270–3299. https://doi.org/10.3390/w6113270

    Article  Google Scholar 

  • Radia G, Kamila BH, Abderrazak B (2021) Highlighting drought in the Wadi Lakhdar Watershed Tafna, Northwestern Algeria. Arab J Geosci 14(11):984. https://doi.org/10.1007/s12517-021-07094-3

    Article  Google Scholar 

  • Rodgers JL, Nicewander WA (1988) Thirteen ways to look at the correlation coefficient. Am Stat 42(1):59. https://doi.org/10.2307/2685263

    Article  Google Scholar 

  • Sanata W (2013) Analisis Neraca Air Harian DAS Cikapundung Hulu Menggunakan Model HBV96. PhD thesis, BS Dissertation. Parahyangan Catholic University, Bandung (in Indonesian)

  • Shukla S, Wood AW (2008) Use of a standardized runoff index for characterizing hydrologic drought. Geophys Res Lett 35(2):L02405. https://doi.org/10.1029/2007GL032487

    Article  Google Scholar 

  • Singh VP (ed) (1995) Computer models of watershed hydrology. Water Resources Publications

  • Stahl K (2001) Hydrological drought–a study across Europe. Br, Freiburg Institut für Hydrologie der Universität Freiburg i

  • Tabari H, Nikbakht J, Hosseinzadeh Talaee P (2013) Hydrological drought assessment in Northwestern Iran based on Streamflow Drought Index (SDI). Water Resour Manag 27(1):137–151. https://doi.org/10.1007/s11269-012-0173-3

    Article  Google Scholar 

  • Van Loon A, Laaha G (2015) Hydrological drought severity explained by climate and catchment characteristics. J Hydrol 526:3–14. https://doi.org/10.1016/j.jhydrol.2014.10.059

    Article  Google Scholar 

  • Vicente-Serrano SM, Lòpez-Moreno JI, Beguería S, Lorenzo-Lacruz J, Azorin-Molina C, Morán-Tejeda E (2012) Accurate computation of a Streamflow Drought Index. J Hydrol Eng 17(2):318–332. https://doi.org/10.1061/(ASCE)HE.1943-5584.0000433

    Article  Google Scholar 

  • Weng B, Zhang P, Li S (2015) Drought risk assessment in China with different spatial scales. Arab J Geosci 8(12):10193–10202. https://doi.org/10.1007/s12517-015-1938-9

    Article  Google Scholar 

  • Yew Gan T, Dlamini EM, Biftu GF (1997) Effects of model complexity and structure, data quality, and objective functions on hydrologic modeling. J Hydrol 192(1–4):81–103. https://doi.org/10.1016/S0022-1694(96)03114-9

    Article  Google Scholar 

  • Zargar A, Sadiq R, Naser B, Khan FI (2011) A review of drought indices. Environ Rev 19:333–349. https://doi.org/10.1139/a11-013

    Article  Google Scholar 

Download references

Funding

The authors have not disclosed any funding.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M’hamed Atallah.

Ethics declarations

Conflict of interest

On behalf of all authors, the corresponding author states that there is no conflict of interest.

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Atallah, M., Djellouli, F., Bouanani, A. et al. Assessment of Catchment Behavior of the Wadi Louza in NW-Algeria Under Hydrological Drought Conditions. Earth Syst Environ 7, 297–306 (2023). https://doi.org/10.1007/s41748-022-00325-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s41748-022-00325-x

Keywords

Navigation