Skip to main content
Log in

Quantum Error Correction: Noise-Adapted Techniques and Applications

  • Review Article
  • Published:
Journal of the Indian Institute of Science Aims and scope

Abstract

The quantum computing devices of today have tens to hundreds of qubits that are highly susceptible to noise due to unwanted interactions with their environment. The theory of quantum error correction provides a scheme by which the effects of such noise on quantum states can be mitigated, paving the way for realising robust, scalable quantum computers. In this article we survey the current landscape of quantum error correcting (QEC) codes, focusing on recent theoretical advances in the domain of noise-adapted QEC, and highlighting some key open questions. We also discuss the interesting connections that have emerged between such adaptive QEC techniques and fundamental physics, especially in the areas of many-body physics and cosmology. We conclude with a brief review of the theory of quantum fault tolerance which gives a quantitative estimate of the physical noise threshold below which error-resilient quantum computation is possible.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1:
Figure 2:
Figure 3:
Figure 4:
Figure 5:
Figure 6:
Figure 7:

Similar content being viewed by others

References

  1. Arute F, Arya K, Babbush R, Bacon D, Bardin JC, Barends R, Biswas R, Boixo S, Brandao FG, Buell DA et al (2019) Quantum supremacy using a programmable superconducting processor. Nature 574(7779):505–510

    CAS  Google Scholar 

  2. Zhong H-S, Deng Y-H, Qin J, Wang H, Chen M-C, Peng L-C, Luo Y-H, Wu D, Gong S-Q, Su H et al (2021) Phase-programmable gaussian boson sampling using stimulated squeezed light. Phys Rev Lett 127(18):180205

    Google Scholar 

  3. Preskill J (2018) Quantum computing in the nisq era and beyond. Quantum 2:79

    Google Scholar 

  4. Lidar DA, Brun TA (2013) Quantum error correction. Cambridge University Press, Cambridge

    Google Scholar 

  5. Shor PW (1995) Scheme for reducing decoherence in quantum computer memory. Phys Rev A 52:2493–2496. https://doi.org/10.1103/PhysRevA.52.R2493

    Article  Google Scholar 

  6. Calderbank AR, Shor PW (1996) Good quantum error-correcting codes exist. Phys Rev A 54:1098–1105. https://doi.org/10.1103/PhysRevA.54.1098

    Article  CAS  Google Scholar 

  7. Steane AM (1996) Error correcting codes in quantum theory. Phys Rev Lett 77:793–797. https://doi.org/10.1103/PhysRevLett.77.793

    Article  CAS  Google Scholar 

  8. Wootters WK, Zurek WH (1982) A single quantum cannot be cloned. Nature 299(5886):802–803

    CAS  Google Scholar 

  9. Knill E, Laflamme R (1997) Theory of quantum error-correcting codes. Phys Rev A 55:900–911. https://doi.org/10.1103/PhysRevA.55.900

    Article  CAS  Google Scholar 

  10. Schumacher B, Nielsen MA (1996) Quantum data processing and error correction. Phys Rev A 54:2629–2635. https://doi.org/10.1103/PhysRevA.54.2629

    Article  CAS  Google Scholar 

  11. Nielsen MA, Chuang IL (2000) Quantum computation and quantum information. Cambridge University Press, Cambridge

    Google Scholar 

  12. Gottesman D (1997) Stabilizer codes and quantum error correction. California Institute of Technology, California

    Google Scholar 

  13. Terhal BM (2015) Quantum error correction for quantum memories. Rev Mod Phys 87(2):307

    Google Scholar 

  14. Bombín H (2013) An introduction to topological quantum codes. arXiv preprint arXiv:1311.0277

  15. Raussendorf R, Harrington J (2007) Fault-tolerant quantum computation with high threshold in two dimensions. Phys Rev Lett 98(19):190504

    Google Scholar 

  16. Leung DW, Nielsen MA, Chuang IL, Yamamoto Y (1997) Approximate quantum error correction can lead to better codes. Phys Rev A 56:2567–2573

    CAS  Google Scholar 

  17. Ng HK, Mandayam P (2010) Simple approach to approximate quantum error correction based on the transpose channel. Phys Rev A 81:062342

    Google Scholar 

  18. Fletcher AS, Shor PW, Win MZ (2008) Channel-adapted quantum error correction for the amplitude damping channel. IEEE Trans Inf Theory 54(12):5705–5718

    Google Scholar 

  19. Fletcher AS, Shor PW, Win MZ (2007) Optimum quantum error recovery using semidefinite programming. Phys Rev A 75(1):012338

    Google Scholar 

  20. Bény C, Oreshkov O (2010) General conditions for approximate quantum error correction and near-optimal recovery channels. Phys Rev Lett 104(12):120501

    Google Scholar 

  21. Tyson J (2010) Two-sided bounds on minimum-error quantum measurement, on the reversibility of quantum dynamics, and on maximum overlap using directional iterates. J Math Phys 51(9):092204

    Google Scholar 

  22. Mandayam P, Ng HK (2012) Towards a unified framework for approximate quantum error correction. Phys Rev A 86(1):012335

    Google Scholar 

  23. Barnum H, Knill E (2002) Reversing quantum dynamics with near-optimal quantum and classical fidelity. J Math Phys 43(5):2097–2106

    Google Scholar 

  24. Ohya M, Petz D (2004) Quantum entropy and its use. Springer, Berlin

    Google Scholar 

  25. Jayashankar A, Babu AM, Ng HK, Mandayam P (2020) Finding good quantum codes using the cartan form. Phys. Rev. A 101:042307

    CAS  Google Scholar 

  26. Johnson PD, Romero J, Olson J, Cao Y, Aspuru-Guzik A (2017) Qvector: an algorithm Dfor device-tailored quantum error correction. arXiv preprint arXiv:1711.02249

  27. Cao C, Zhang C, Wu Z, Grassl M, Zeng B (2022) Quantum variational learning for quantum error-correcting codes. arXiv preprint arXiv:2204.03560

  28. Fösel T, Tighineanu P, Weiss T, Marquardt F (2018) Reinforcement learning with neural networks for quantum feedback. Phys. Rev. X 8:031084. https://doi.org/10.1103/PhysRevX.8.031084

    Article  Google Scholar 

  29. Kibe Tanay, Mandayam P, Mukhopadhyay A (2022) Holographic spacetime, black holes and quantum error correcting codes: a review. Eur. Phys. J. C 82(5):463. https://doi.org/10.1140/epjc/s10052-022-10382-1

    Article  CAS  Google Scholar 

  30. Preskill J (1998) Fault-tolerant quantum computation. In: Introduction to quantum computation and information. World Scientific, pp 213–269

  31. Knill E (2005) Quantum computing with realistically noisy devices. Nature 434(7029):39–44

    CAS  Google Scholar 

  32. Aliferis P, Gottesman D, Preskill J (2006) Quantum accuracy threshold for concatenated distance-3 codes. Quantum Inf Comput 6(2):97–165

    Google Scholar 

  33. Jayashankar A, Long MDH, Ng HK, Mandayam P (2022) Achieving fault tolerance against amplitude-damping noise. Phys Rev Res 4:023034. https://doi.org/10.1103/PhysRevResearch.4.023034

    Article  CAS  Google Scholar 

  34. Jayashankar A (2022) Adaptive quantum codes: constructions, applications and fault tolerance. arXiv preprint arXiv:2203.03247

  35. Cao E, Lin W, Sun M, Liang W, Song Y (2018) Exciton-plasmon coupling interactions: from principle to applications. Nanophotonics 7(1):145–167

    Google Scholar 

  36. Kribs D, Laflamme R, Poulin D (2005) Unified and generalized approach to quantum error correction. Phys Rev Lett 94(18):180501

    Google Scholar 

  37. Laflamme R, Miquel C, Paz JP, Zurek WH (1996) Perfect quantum error correcting code. Phys Rev Lett 77:198–201

    CAS  Google Scholar 

  38. Petz D (2003) Monotonicity of quantum relative entropy revisited. Rev Math Phys 15(01):79–91

    Google Scholar 

  39. Bény C, Oreshkov O (2010) General conditions for approximate quantum error correction and near-optimal recovery channels. Phys Rev Lett 104:120501. https://doi.org/10.1103/PhysRevLett.104.120501

    Article  CAS  Google Scholar 

  40. Schumacher B, Westmoreland MD (2002) Approximate quantum error correction. Quantum Inf Process 1(1):5–12

    Google Scholar 

  41. Len YL, Ng HK (2018) Open-system quantum error correction. Phys Rev A 98(2):022307

    CAS  Google Scholar 

  42. Surace J, Scandi M (2022) State retrieval beyond Bayes’ retrodiction and reverse processes. arXiv:2201.09899

  43. Lautenbacher L, de Melo F, Bernardes NK (2022) Approximating invertible maps by recovery channels: optimality and an application to non-Markovian dynamics. Phys Rev A 105:042421. https://doi.org/10.1103/PhysRevA.105.042421

    Article  CAS  Google Scholar 

  44. Kwon H, Mukherjee R, Kim MS (2022) Reversing lindblad dynamics via continuous petz recovery map. Phys Rev Lett 128:020403. https://doi.org/10.1103/PhysRevLett.128.020403

    Article  CAS  Google Scholar 

  45. Lami L, Das S, Wilde MM (2018) Approximate reversal of quantum gaussian dynamics. J Phys A Math Theor 51(12):125301

    Google Scholar 

  46. Gilyén A, Lloyd S, Marvian I, Quek Y, Wilde MM (2022) Quantum algorithm for petz recovery channels and pretty good measurements. Phys Rev Lett 128(22):220502

    Google Scholar 

  47. Yamamoto N, Hara S, Tsumura K (2005) Suboptimal quantum-error-correcting procedure based on semidefinite programming. Phys Rev A 71:022322. https://doi.org/10.1103/PhysRevA.71.022322

    Article  CAS  Google Scholar 

  48. Kosut RL, Lidar DA (2009) Quantum error correction via convex optimization. Quantum Inf Process 8(5):443–459

    Google Scholar 

  49. Fletcher AS (2007) Channel-adapted quantum error correction. arXiv preprint arXiv:0706.3400

  50. Cochrane PT, Milburn GJ, Munro WJ (1999) Macroscopically distinct quantum-superposition states as a bosonic code for amplitude damping. Phys Rev A 59:2631–2634. https://doi.org/10.1103/PhysRevA.59.2631

    Article  CAS  Google Scholar 

  51. Li L, Zou C-L, Albert VV, Muralidharan S, Girvin SM, Jiang L (2017) Cat codes with optimal decoherence suppression for a lossy bosonic channel. Phys Rev Lett 119:030502. https://doi.org/10.1103/PhysRevLett.119.030502

    Article  Google Scholar 

  52. Michael MH, Silveri M, Brierley R, Albert VV, Salmilehto J, Jiang L, Girvin SM (2016) New class of quantum error-correcting codes for a bosonic mode. Phys Rev X 6(3):031006

    Google Scholar 

  53. Lang R, Shor PW (2007) Nonadditive quantum error correcting codes adapted to the ampltitude damping channel. arXiv preprint arXiv:0712.2586

  54. Shor PW, Smith G, Smolin JA, Zeng B (2011) High performance single-error-correcting quantum codes for amplitude damping. IEEE Trans Inf Theory 57(10):7180–7188. https://doi.org/10.1109/TIT.2011.2165149

    Article  Google Scholar 

  55. Cafaro C, van Loock P (2014) Approximate quantum error correction for generalized amplitude-damping errors. Phys Rev A 89(2):022316

    Google Scholar 

  56. Khaneja N, Glaser SJ (2001) Cartan decomposition of su (2n) and control of spin systems. Chem Phys 267:11–23

    CAS  Google Scholar 

  57. Earp HNS, Pachos JK (2005) A constructive algorithm for the cartan decomposition of su(2n). J Math Phys 46(8):082108

    Google Scholar 

  58. Bausch J, Leditzky F (2020) Quantum codes from neural networks. New J Phys 22(2):023005

    Google Scholar 

  59. Nautrup HP, Delfosse N, Dunjko V, Briegel HJ, Friis N (2019) Optimizing quantum error correction codes with reinforcement learning. Quantum 3:215

    Google Scholar 

  60. Dennis E, Kitaev A, Landahl A, Preskill J (2002) Topological quantum memory. J Math Phys 43(9):4452–4505

    Google Scholar 

  61. Baskaran G, Mandal S, Shankar R (2007) Exact results for spin dynamics and fractionalization in the Kitaev model. Phys Rev Lett 98(24):247201

    CAS  Google Scholar 

  62. Ferris AJ, Poulin D (2014) Tensor networks and quantum error correction. Phys Rev Lett 113(3):030501

    Google Scholar 

  63. Pastawski F, Yoshida B, Harlow D, Preskill J (2015) Holographic quantum error-correcting codes: toy models for the bulk/boundary correspondence. J High Energy Phys 2015(6):1–55

    Google Scholar 

  64. Brandao FGSL, Crosson E, Sahinoglu MB, Bowen J (2019) Quantum error correcting codes in eigenstates of translation-invariant spin chains. Phys Rev Lett 123:110502. https://doi.org/10.1103/PhysRevLett.123.110502

    Article  CAS  Google Scholar 

  65. Bohdanowicz TC, Crosson E, Nirkhe C, Yuen H (2019) Good approximate quantum ldpc codes from spacetime circuit hamiltonians. In: Proceedings of the 51st annual ACM SIGACT symposium on theory of computing. STOC. Association for Computing Machinery, New York, pp 481–490. https://doi.org/10.1145/3313276.3316384

  66. Bose S (2007) Quantum communication through spin chain dynamics: an introductory overview. Contemp Phys 48(1):13–30

    CAS  Google Scholar 

  67. Bose S (2003) Quantum communication through an unmodulated spin chain. Phys Rev Lett 91:207901. https://doi.org/10.1103/PhysRevLett.91.207901

    Article  CAS  Google Scholar 

  68. Burgarth D, Bose S (2005) Conclusive and arbitrarily perfect quantum-state transfer using parallel spin-chain channels. Phys Rev A 71:052315

    Google Scholar 

  69. Osborne TJ, Linden N (2004) Propagation of quantum information through a spin system. Phys Rev A 69(5):052315

    Google Scholar 

  70. Allcock J, Linden N (2009) Quantum communication beyond the localization length in disordered spin chains. Phys Rev Lett 102(11):110501

    Google Scholar 

  71. Kay A (2016) Quantum error correction for state transfer in noisy spin chains. Phys Rev A 93:042320. https://doi.org/10.1103/PhysRevA.93.042320

    Article  CAS  Google Scholar 

  72. Jayashankar A, Mandayam P (2018) Pretty good state transfer via adaptive quantum error correction. Phys Rev A 98:052309

    CAS  Google Scholar 

  73. Almheiri A, Dong X, Harlow D (2015) Bulk locality and quantum error correction in ads/cft. J High Energy Phys 2015(4):1–34

    Google Scholar 

  74. Pastawski F, Preskill J (2017) Code properties from holographic geometries. Phys Rev X 7(2):021022

    Google Scholar 

  75. Dong X, Harlow D, Wall AC (2016) Reconstruction of bulk operators within the entanglement wedge in gauge-gravity duality. Phys Rev Lett 117(2):021601

    Google Scholar 

  76. Jafferis DL, Lewkowycz A, Maldacena J, Suh SJ (2016) Relative entropy equals bulk relative entropy. J High Energy Phys 2016(6):1–20

    Google Scholar 

  77. Cotler J, Hayden P, Penington G, Salton G, Swingle B, Walter M (2019) Entanglement wedge reconstruction via universal recovery channels. Phys Rev X 9(3):031011

    CAS  Google Scholar 

  78. Junge M, Renner R, Sutter D, Wilde M.M, Winter A (2018) Universal recovery maps and approximate sufficiency of quantum relative entropy. In: Annales Henri Poincaré, vol 19. Springer, pp 2955–2978

  79. Chen C-F, Penington G, Salton G (2020) Entanglement wedge reconstruction using the petz map. J High Energy Phys 2020(1):1–14

    CAS  Google Scholar 

  80. Jia HF, Rangamani M (2020) Petz reconstruction in random tensor networks. J High Energy Phys 2020(10):1–15

    Google Scholar 

  81. Faulkner T, Hollands S, Swingle B, Wang Y (2022) Approximate recovery and relative entropy i: General von neumann subalgebras. Commun Math Phys 1–49

  82. Cross AW, Divincenzo DP, Terhal BM (2009) A comparative code study for quantum fault tolerance. Quantum Inf Comput 9(7):541–572

    Google Scholar 

  83. Campbell ET, Terhal BM, Vuillot C (2017) Roads towards fault-tolerant universal quantum computation. Nature 549(7671):172–179

    CAS  Google Scholar 

  84. Wang D-S, Wang Y-J, Cao N, Zeng B, Laflamme R (2022) Theory of quasi-exact fault-tolerant quantum computing and valence-bond-solid codes. New J Phys 24(2):023019

    Google Scholar 

  85. Wang D-S, Zhu G, Okay C, Laflamme R (2020) Quasi-exact quantum computation. Phys Rev Res 2:033116. https://doi.org/10.1103/PhysRevResearch.2.033116

    Article  CAS  Google Scholar 

  86. Eastin B, Knill E (2009) Restrictions on transversal encoded quantum gate sets. Phys Rev Lett 102(11):110502

    Google Scholar 

  87. Aliferis P, Preskill J (2008) Fault-tolerant quantum computation against biased noise. Phys Rev A 78:052331. https://doi.org/10.1103/PhysRevA.78.052331

    Article  CAS  Google Scholar 

  88. Puri S, St-Jean L, Gross JA, Grimm A, Frattini NE, Iyer PS, Krishna A, Touzard S, Jiang L, Blais A et al (2020) Bias-preserving gates with stabilized cat qubits. Sci Adv 6(34):5901

    Google Scholar 

  89. Xu Q, Iverson JK, Brandão FG, Jiang L (2022) Engineering fast bias-preserving gates on stabilized cat qubits. Phys Rev Res 4(1):013082

    CAS  Google Scholar 

  90. Jurcevic P, Javadi-Abhari A, Bishop LS, Lauer I, Bogorin DF, Brink M, Capelluto L, Günlük O, Itoko T, Kanazawa N et al (2021) Demonstration of quantum volume 64 on a superconducting quantum computing system. Quantum Sci Technol 6(2):025020

    Google Scholar 

  91. Pokharel B, Anand N, Fortman B, Lidar DA (2018) Demonstration of fidelity improvement using dynamical decoupling with superconducting qubits. Phys Rev Lett 121(22):220502

    CAS  Google Scholar 

  92. Ghosh D, Agarwal P, Pandey P, Behera BK, Panigrahi PK (2018) Automated error correction in ibm quantum computer and explicit generalization. Quantum Inf Process 17(6):1–24

    Google Scholar 

  93. Wootton JR, Loss D (2018) Repetition code of 15 qubits. Phys Rev A 97(5):052313

    CAS  Google Scholar 

  94. Bharti K, Cervera-Lierta A, Kyaw TH, Haug T, Alperin-Lea S, Anand A, Degroote M, Heimonen H, Kottmann JS, Menke T, Mok W-K, Sim S, Kwek L-C, Aspuru-Guzik A (2022) Noisy intermediate-scale quantum algorithms. Rev. Mod. Phys. 94:015004. https://doi.org/10.1103/RevModPhys.94.015004

    Article  CAS  Google Scholar 

  95. Dumitrescu EF, McCaskey AJ, Hagen G, Jansen GR, Morris TD, Papenbrock T, Pooser RC, Dean DJ, Lougovski P (2018) Cloud quantum computing of an atomic nucleus. Phys Rev Lett 120(21):210501

    CAS  Google Scholar 

  96. Piedrafita Á, Renes JM (2017) Reliable channel-adapted error correction: Bacon-shor code recovery from amplitude damping. Phys Rev Lett 119(25):250501

    Google Scholar 

  97. Cao N, Lin J, Kribs D, Poon Y.-T, Zeng B, Laflamme R (2021) Nisq: Error correction, mitigation, and noise simulation. arXiv preprint arXiv:2111.02345

  98. Suzuki Y, Endo S, Fujii K, Tokunaga Y (2022) Quantum error mitigation as a universal error reduction technique: applications from the nisq to the fault-tolerant quantum computing eras. PRX Quantum 3:010345. https://doi.org/10.1103/PRXQuantum.3.010345

    Article  Google Scholar 

Download references

Acknowledgements

This work is supported in part by a Seed Grant from the Indian Institute of Technology Madras, as part of the Centre for Quantum Information, Communication and Computing. P.M. acknowledges financial support from the MPhasis Foundation and the Department of Science and Technology, Govt. of India, under Grant no. DST/ICPS/QuST/Theme-3/2019/Q59.

Funding

This research was funded by DST, Gov of India, Grant no [DST/ICPS/QuST/Theme-3/2019/Q59] and the MPhasis Foundation via the Center for Quantum Information, Communication and Computing.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Akshaya Jayashankar.

Ethics declarations

Conflict of interest

On behalf of both authors, the corresponding author states that there is no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jayashankar, A., Mandayam, P. Quantum Error Correction: Noise-Adapted Techniques and Applications. J Indian Inst Sci 103, 497–512 (2023). https://doi.org/10.1007/s41745-022-00332-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s41745-022-00332-x

Keywords

Navigation