Skip to main content
Log in

A Review of Developments in Superconducting Quantum Processors

  • Review Article
  • Published:
Journal of the Indian Institute of Science Aims and scope

Abstract

Superconducting qubits are currently the leading platform for quantum computing and quantum information processing in general. Over the last decade, there have been rapid developments in the performance of small-scale quantum processors based on superconducting qubits, showing promise for a practical quantum processor in the coming years. These developments have taken place in terms of control and measurement techniques, connectivity, qubit architecture, and coherence performance. It has been led by novel design strategies, improvements in materials and fabrication processes, as well as advances in peripheral control electronics. In this article, we present a review of the various superconducting qubit devices, their coupling schemes, performance, and developments on the materials front.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1:
Figure 2:
Figure 3:
Figure 4:
Figure 5:
Figure 6:
Figure 7:
Figure 8:
Figure 9:
Figure 10:
Figure 11:
Figure 12:
Figure 13:
Figure 14:
Figure 15:
Figure 16:
Figure 17:
Figure 18:

Similar content being viewed by others

References

  1. Feynman RP (2018) Simulating physics with computers. In: Feynman and computation. CRC Press, pp 133–153, 1st edn. ISBN 9780429500459

  2. Shor PW (1999) Polynomial-time algorithms for prime factorization and discrete logarithms on a quantum computer. SIAM Rev 41(2):303–332

    Google Scholar 

  3. Grover LK (1996) A fast quantum mechanical algorithm for database search. In: Proceedings of the twenty-eighth annual ACM symposium on theory of computing, pp 212–219

  4. Zhong H-S, Wang H, Deng Y-H, Chen M-C, Peng L-C, Luo Y-H, Qin J, Wu D, Ding X, Hu Y et al (2020) Quantum computational advantage using photons. Science 370(6523):1460–1463

    CAS  Google Scholar 

  5. DiVincenzo DP (2000) The physical implementation of quantum computation. Fortschritte der Physik Progr Phys 48(9–11):771–783

    Google Scholar 

  6. Arute F, Arya K, Babbush R, Bacon D, Bardin JC, Barends R, Biswas R, Boixo S, Brandao FG, Buell DA et al (2019) Quantum supremacy using a programmable superconducting processor. Nature 574(7779):505–510

    CAS  Google Scholar 

  7. Gong M, Wang S, Zha C, Chen M-C, Huang H-L, Wu Y, Zhu Q, Zhao Y, Li S, Guo S et al (2021) Quantum walks on a programmable two-dimensional 62-qubit superconducting processor. Science 372(6545):948–952

    CAS  Google Scholar 

  8. Dolan G (1977) Offset masks for lift-off photoprocessing. Appl Phys Lett 31(5):337–339

    Google Scholar 

  9. Vion D (2004) Course 14 Josephson quantum bits based on a cooper pair box. Les Houches. https://doi.org/10.1016/S0924-8099(03)80038-0

    Article  Google Scholar 

  10. Büttiker M (1987) Zero-current persistent potential drop across small-capacitance Josephson junctions. Phys Rev B 36:3548–3555. https://doi.org/10.1103/PhysRevB.36.3548

    Article  Google Scholar 

  11. Bouchiat V, Vion D, Joyez P, Esteve D, Devoret M (2006) Quantum coherence with a single cooper pair. Phys Scr 1998:165. https://doi.org/10.1238/Physica.Topical.076a00165

    Article  Google Scholar 

  12. Nakamura Y, Chen CD, Tsai JS (1997) Spectroscopy of energy-level splitting between two macroscopic quantum states of charge coherently superposed by josephson coupling. Phys Rev Lett 79:2328–2331. https://doi.org/10.1103/PhysRevLett.79.2328

    Article  CAS  Google Scholar 

  13. Nakamura Y, Pashkin YA, Tsai JS (1999) Coherent control of macroscopic quantum states in a single-cooper-pair box. Nature 398:786–788. https://doi.org/10.1038/19718

    Article  CAS  Google Scholar 

  14. Vion D, Aassime A, Cottet A, Joyez P, Pothier H, Urbina C, Esteve D, Devoret MH (2002) Manipulating the quantum state of an electrical circuit. Science 296:886–889. https://doi.org/10.1126/science.1069372

    Article  CAS  Google Scholar 

  15. Shnirman A, Schön G (1998) Quantum measurements performed with a single-electron transistor. Phys Rev B Condens Matter Mater Phys 57(24):15400–15407. https://doi.org/10.1103/PhysRevB.57.15400arXiv:cond-mat/9801125

    Article  CAS  Google Scholar 

  16. Makhlin Y, Schön G, Shnirman A (1999) Josephson-junction qubits with controlled couplings. Nature 398(6725):305–307. https://doi.org/10.1038/18613arXiv:cond-mat/9808067

    Article  CAS  Google Scholar 

  17. Kim Z, Zaretskey V, Yoon Y, Schneiderman J, Shaw M, Echternach P, Wellstood F, Palmer B (2008) Anomalous avoided level crossings in a Cooper-pair box spectrum. Phys Rev B 78(14):144506

    Google Scholar 

  18. Wallraff A, Schuster DI, Blais A, Frunzio L, Huang R-S, Majer J, Kumar S, Girvin SM, Schoelkopf RJ (2004) Strong coupling of a single photon to a superconducting qubit using circuit quantum electrodynamics. Nature 431(7005):162–7. https://doi.org/10.1038/nature02851

    Article  CAS  Google Scholar 

  19. Schuster D, Houck AA, Schreier J, Wallraff A, Gambetta J, Blais A, Frunzio L, Majer J, Johnson B, Devoret M et al (2007) Resolving photon number states in a superconducting circuit. Nature 445(7127):515–518

    CAS  Google Scholar 

  20. Kim Z, Suri B, Zaretskey V, Novikov S, Osborn KD, Mizel A, Wellstood FC, Palmer BS (2011) Decoupling a Cooper-pair box to enhance the lifetime to 0.2 ms. Phys Rev Lett 106:120501. https://doi.org/10.1103/PhysRevLett.106.120501

    Article  CAS  Google Scholar 

  21. Koch J, Yu TM, Gambetta J, Houck AA, Schuster DI, Majer J, Blais A, Devoret MH, Girvin SM, Schoelkopf RJ (2007) Charge-insensitive qubit design derived from the Cooper pair box. Phys Rev A At Mol Opt Phys 76(4):1–19. https://doi.org/10.1103/PhysRevA.76.042319arXiv:cond-mat/0703002

    Article  CAS  Google Scholar 

  22. Suri B, Keane Z, Ruskov R, Bishop LS, Tahan C, Novikov S, Robinson J, Wellstood F, Palmer B (2013) Observation of Autler–Townes effect in a dispersively dressed Jaynes–Cummings system. New J Phys 15(12):125007

    Google Scholar 

  23. Suri B, Keane Z, Bishop LS, Novikov S, Wellstood FC, Palmer BS (2015) Nonlinear microwave photon occupancy of a driven resonator strongly coupled to a Transmon qubit. Phys Rev A 92(6):063801

    Google Scholar 

  24. Schuster DI, Houck AA, Schreier JA, Wallraff A, Gambetta JM, Blais A, Frunzio L, Majer J, Johnson B, Devoret MH, Girvin SM, Schoelkopf RJ (2007) Resolving photon number states in a superconducting circuit. Nature 445:515–518. https://doi.org/10.1038/nature05461

    Article  CAS  Google Scholar 

  25. Houck AA, Schuster DI, Gambetta JM, Schreier JA, Johnson BR, Chow JM, Frunzio L, Majer J, Devoret MH, Girvin SM, Schoelkopf RJ (2007) Generating single microwave photons in a circuit. Nature 449:328–331. https://doi.org/10.1038/nature06126

    Article  CAS  Google Scholar 

  26. Majer J, Chow JM, Gambetta JM, Koch J, Johnson BR, Schreier JA, Frunzio L, Schuster DI, Houck AA, Wallraff A, Blais A, Devoret MH, Girvin SM, Schoelkopf RJ (2007) Coupling superconducting qubits via a cavity bus. Nature 449:443–447. https://doi.org/10.1038/nature06184

    Article  CAS  Google Scholar 

  27. Schreier JA, Houck AA, Koch J, Schuster DI, Johnson BR, Chow JM, Gambetta JM, Majer J, Frunzio L, Devoret MH, Girvin SM, Schoelkopf RJ (2008) Suppressing charge noise decoherence in superconducting charge qubits. Phys Rev B 77:180502. https://doi.org/10.1103/PhysRevB.77.180502

    Article  CAS  Google Scholar 

  28. Nersisyan A, Sete EA, Stanwyck SW, Bestwick AJ, Reagor M, Poletto S, Alidoust N, Manenti R, Renzas RJ, Bui C, Vu K, Whyland T, Mohan Y (2019) Manufacturing low dissipation superconducting quantum processors. In: 2019 IEEE international electron devices meeting (IEDM), 31, p 113114

  29. Barends R, Kelly J, Megrant A, Sank D, Jeffrey E, Chen Y, Yin Y, Chiaro B, Mutus J, Neill C, O’Malley P, Roushan P, Wenner J, White TC, Cleland AN, Martinis JM (2013) Coherent Josephson qubit suitable for scalable quantum integrated circuits. Phys Rev Lett 111:80502. https://doi.org/10.1103/PhysRevLett.111.080502

    Article  CAS  Google Scholar 

  30. Place APM, Rodgers LVH, Mundada P, Smitham BM, Fitzpatrick M, Leng Z, Premkumar A, Bryon J, Vrajitoarea A, Sussman S, Cheng G, Madhavan T, Babla HK, Le XH, Gang Y, Jäck B, Gyenis A, Yao N, Cava RJ, de Leon NP, Houck AA (2021) New material platform for superconducting transmon qubits with coherence times exceeding 0.3 milliseconds. Nat Commun 12:1779. https://doi.org/10.1038/s41467-021-22030-5

    Article  CAS  Google Scholar 

  31. Wang C, Li X, Xu H, Li Z, Wang J, Yang Z, Mi Z, Liang X, Su T, Yang C, Wang G, Wang W, Li Y, Chen M, Li C, Linghu K, Han J, Zhang Y, Feng Y, Song Y, Ma T, Zhang J, Wang R, Zhao P, Liu W, Xue G, Jin Y, Yu H (2022) Towards practical quantum computers: transmon qubit with a lifetime approaching 0.5 milliseconds. npj Quantum Inf 8:3. https://doi.org/10.1038/s41534-021-00510-2

    Article  Google Scholar 

  32. Paik H, Schuster DI, Bishop LS, Kirchmair G, Catelani G, Sears AP, Johnson BR, Reagor MJ, Frunzio L, Glazman LI, Girvin SM, Devoret MH, Schoelkopf RJ (2011) Observation of high coherence in Josephson junction qubits measured in a three-dimensional circuit QED architecture. Phys Rev Lett 107(24):1–5. https://doi.org/10.1103/PhysRevLett.107.240501arXiv:1105.4652

    Article  CAS  Google Scholar 

  33. Rigetti C, Gambetta JM, Poletto S, Plourde BL, Chow JM, Córcoles AD, Smolin JA, Merkel ST, Rozen JR, Keefe GA et al (2012) Superconducting qubit in a waveguide cavity with a coherence time approaching 0.1 ms. Phys Rev B 86(10):100506

    Google Scholar 

  34. Reshitnyk Y, Jerger M, Fedorov A (2016) 3d microwave cavity with magnetic flux control and enhanced quality factor. EPJ Quantum Technol 3:13. https://doi.org/10.1140/epjqt/s40507-016-0050-8

    Article  Google Scholar 

  35. Axline C, Reagor M, Heeres R, Reinhold P, Wang C, Shain K, Pfaff W, Chu Y, Frunzio L, Schoelkopf RJ (2016) An architecture for integrating planar and 3d cqed devices. Appl Phys Lett 109:042601. https://doi.org/10.1063/1.4959241

    Article  CAS  Google Scholar 

  36. Leghtas Z, Kirchmair G, Vlastakis B, Schoelkopf RJ, Devoret MH, Mirrahimi M (2013) Hardware-efficient autonomous quantum memory protection. Phys Rev Lett 111:120501. https://doi.org/10.1103/PhysRevLett.111.120501

    Article  CAS  Google Scholar 

  37. Leghtas Z, Kirchmair G, Vlastakis B, Devoret MH, Schoelkopf RJ, Mirrahimi M (2013) Deterministic protocol for mapping a qubit to coherent state superpositions in a cavity. Phys Rev A 87:42315. https://doi.org/10.1103/PhysRevA.87.042315

    Article  CAS  Google Scholar 

  38. Kirchmair G, Vlastakis B, Leghtas Z, Nigg SE, Paik H, Ginossar E, Mirrahimi M, Frunzio L, Girvin SM, Schoelkopf RJ (2013) Observation of quantum state collapse and revival due to the single-photon Kerr effect. Nature 495:205–209. https://doi.org/10.1038/nature11902

    Article  CAS  Google Scholar 

  39. Yurke B, Stoler D (1986) Generating quantum mechanical superpositions of macroscopically distinguishable states via amplitude dispersion. Phys Rev Lett 57:13–16. https://doi.org/10.1103/PhysRevLett.57.13

    Article  CAS  Google Scholar 

  40. Nigg SE, Paik H, Vlastakis B, Kirchmair G, Shankar S, Frunzio L, Devoret MH, Schoelkopf RJ, Girvin SM (2012) Black-box superconducting circuit quantization. Phys Rev Lett 108:240502. https://doi.org/10.1103/PhysRevLett.108.240502

    Article  CAS  Google Scholar 

  41. Mirrahimi M, Leghtas Z, Albert VV, Touzard S, Schoelkopf RJ, Jiang L, Devoret MH (2014) Dynamically protected cat-qubits: a new paradigm for universal quantum computation. New J Phys 16:045014. https://doi.org/10.1088/1367-2630/16/4/045014

    Article  Google Scholar 

  42. Ofek N, Petrenko A, Heeres R, Reinhold P, Leightas Z, Vlastakis B, Liu Y, Frunzio L, Girvin SM, Jiang L, Mirrahimi M, Devoret MH, Schoelkopf RJ (2016) Extending the lifetime of a quantum bit with error correction in superconducting circuits. Nature 536:441

    CAS  Google Scholar 

  43. Puri S, Boutin S, Blais A (2017) Engineering the quantum states of light in a Kerr-nonlinear resonator by two-photon driving. npj Quantum Inf 3:18. https://doi.org/10.1038/s41534-017-0019-1

    Article  Google Scholar 

  44. Guillaud J, Mirrahimi M (2019) Repetition cat qubits for fault-tolerant quantum computation. Phys Rev X 9:41053. https://doi.org/10.1103/PhysRevX.9.041053

    Article  CAS  Google Scholar 

  45. Grimm A, Frattini NE, Puri S, Mundhada SO, Touzard S, Mirrahimi M, Girvin SM, Shankar S, Devoret MH (2020) Stabilization and operation of a Kerr-cat qubit. Nature 584:205–209. https://doi.org/10.1038/s41586-020-2587-z

    Article  CAS  Google Scholar 

  46. Roy T, Kundu S, Chand M, Hazra S, Nehra N, Cosmic R, Ranadive A, Patankar MP, Damle K, Vijay R (2017) Implementation of pairwise longitudinal coupling in a three-qubit superconducting circuit. Phys Rev Appl 7:054025

    Google Scholar 

  47. Roy T, Chand M, Bhattacharjee A, Hazra S, Kundu S, Damle K, Vijay R (2018) Multimode superconducting circuits for realizing strongly coupled multiqubit processor units. Phys Rev A 98(5):052318

    CAS  Google Scholar 

  48. Roy T, Hazra S, Kundu S, Chand M, Patankar MP, Vijay R (2020) Programmable superconducting processor with native three-qubit gates. Phys Rev Appl 14(1):014072

    CAS  Google Scholar 

  49. Friedman JR, Patel V, Chen W, Tolpygo SK, Lukens JE (2000) Quantum superposition of distinct macroscopic states. Nature 406:43–46. https://doi.org/10.1038/35017505

    Article  CAS  Google Scholar 

  50. Leggett AJ (1980) Macroscopic quantum systems and the quantum theory of measurement. Prog Theor Phys Suppl 69:80–100. https://doi.org/10.1143/PTP.69.80

    Article  Google Scholar 

  51. Krantz P, Kjaergaard M, Yan F, Orlando TP, Gustavsson S, Oliver WD (2019) A quantum engineer’s guide to superconducting qubits. Appl Phys Rev 6:021318. https://doi.org/10.1063/1.5089550

    Article  CAS  Google Scholar 

  52. You JQ, Hu X, Ashhab S, Nori F (2007) Low-decoherence flux qubit. Phys Rev B 75:140515. https://doi.org/10.1103/PhysRevB.75.140515

    Article  CAS  Google Scholar 

  53. Yan F, Gustavsson S, Kamal A, Birenbaum J, Sears AP, Hover D, Gudmundsen TJ, Rosenberg D, Samach G, Weber S, Yoder JL, Orlando TP, Clarke J, Kerman AJ, Oliver WD (2016) The flux qubit revisited to enhance coherence and reproducibility. Nat Commun 7:12964. https://doi.org/10.1038/ncomms12964

    Article  CAS  Google Scholar 

  54. Manucharyan VE, Koch J, Glazman LI, Devoret MH (2009) Fluxonium: single cooper-pair circuit free of charge offsets. Science 326:113–116. https://doi.org/10.1126/science.1175552

    Article  CAS  Google Scholar 

  55. Nguyen LB, Lin Y-H, Somoroff A, Mencia R, Grabon N, Manucharyan VE (2019) High-coherence fluxonium qubit. Phys Rev X 9:41041. https://doi.org/10.1103/PhysRevX.9.041041

    Article  CAS  Google Scholar 

  56. Zhang H, Chakram S, Roy T, Earnest N, Lu Y, Huang Z, Weiss DK, Koch J, Schuster DI (2021) Universal fast-flux control of a coherent, low-frequency qubit. Phys Rev X 11:11010. https://doi.org/10.1103/PhysRevX.11.011010

    Article  CAS  Google Scholar 

  57. Somoroff A, Ficheux Q, Mencia RA, Xiong H, Kuzmin RV, Manucharyan VE (2021) Millisecond coherence in a superconducting qubit. arXiv:2103.08578

  58. Martinis JM, Devoret MH, Clarke J (1985) Energy-level quantization in the zero-voltage state of a current-biased Josephson junction. Phys Rev Lett 55:1543–1546. https://doi.org/10.1103/PhysRevLett.55.1543

    Article  CAS  Google Scholar 

  59. Devoret MH, Martinis JM, Clarke J (1985) Measurements of macroscopic quantum tunneling out of the zero-voltage state of a current-biased Josephson junction. Phys Rev Lett 55:1908–1911. https://doi.org/10.1103/PhysRevLett.55.1908

    Article  CAS  Google Scholar 

  60. Martinis JM, Devoret MH, Clarke J (1987) Experimental tests for the quantum behavior of a macroscopic degree of freedom: the phase difference across a josephson junction. Phys Rev B 35:4682–4698. https://doi.org/10.1103/PhysRevB.35.4682

    Article  CAS  Google Scholar 

  61. Martinis JM, Nam S, Aumentado J, Urbina C (2002) Rabi oscillations in a large Josephson-junction qubit. Phys Rev Lett 89:117901. https://doi.org/10.1103/PhysRevLett.89.117901

    Article  CAS  Google Scholar 

  62. Blais A, Huang R-S, Wallraff A, Girvin SM, Schoelkopf RJ (2004) Cavity quantum electrodynamics for superconducting electrical circuits: an architecture for quantum computation. Phys Rev A 69(6):062320. https://doi.org/10.1103/PhysRevA.69.062320 (Accessed 2022-05-18)

    Article  CAS  Google Scholar 

  63. Gambetta J, Blais A, Schuster DI, Wallraff A, Frunzio L, Majer J, Devoret MH, Girvin SM, Schoelkopf RJ (2006) Qubit-photon interactions in a cavity: measurement-induced dephasing and number splitting. Phys Rev A At Mol Opt Phys 74(4):1–14. https://doi.org/10.1103/PhysRevA.74.042318arXiv:cond-mat/0602322

    Article  CAS  Google Scholar 

  64. Reed MD, Dicarlo L, Johnson BR, Sun L, Schuster DI, Frunzio L, Schoelkopf RJ (2010) High-fidelity readout in circuit quantum electrodynamics using the Jaynes–Cummings nonlinearity. Phys Rev Lett. https://doi.org/10.1103/PhysRevLett.105.173601arXiv:1004.4323

    Article  Google Scholar 

  65. Bishop LS, Ginossar E, Girvin SM (2010) Response of the strongly driven Jaynes–Cummings oscillator. Phys Rev Lett 105(10):3–6. https://doi.org/10.1103/PhysRevLett.105.100505arXiv:1005.0377

    Article  CAS  Google Scholar 

  66. Boissonneault M, Gambetta JM, Blais A (2010) Improved superconducting qubit readout by qubit-induced nonlinearities. Phys Rev Lett 105(10):1–4. https://doi.org/10.1103/PhysRevLett.105.100504arXiv:1005.0004

    Article  CAS  Google Scholar 

  67. Touzard S, Kou A, Frattini NE, Sivak VV, Puri S, Grimm A, Frunzio L, Shankar S, Devoret MH (2019) Gated conditional displacement readout of superconducting qubits. Phys Rev Lett 122(8):80502. https://doi.org/10.1103/PhysRevLett.122.080502arXiv:1809.06964

    Article  CAS  Google Scholar 

  68. Didier N, Bourassa J, Blais A (2015) Fast quantum nondemolition readout by parametric modulation of longitudinal qubit–oscillator interaction. Phys Rev Lett 115(20):1–5. https://doi.org/10.1103/PhysRevLett.115.203601

    Article  CAS  Google Scholar 

  69. Dassonneville R, Ramos T, Milchakov V, Planat L, Dumur Foroughi F, Puertas J, Leger S, Bharadwaj K, Delaforce J, Naud C, Hasch-Guichard W, García-Ripoll JJ, Roch N, Buisson O (2020) Fast high-fidelity quantum nondemolition qubit readout via a nonperturbative cross-Kerr coupling. Phys Rev X 10(1):11045. https://doi.org/10.1103/PhysRevX.10.011045

    Article  CAS  Google Scholar 

  70. Reed MD, Johnson BR, Houck AA, DiCarlo L, Chow JM, Schuster DI, Frunzio L, Schoelkopf RJ (2010) Fast reset and suppressing spontaneous emission of a superconducting qubit. Appl Phys Lett 96(20):203110

    Google Scholar 

  71. Sete EA, Martinis JM, Korotkov AN (2015) Quantum theory of a bandpass Purcell filter for qubit readout. Phys Rev A At Mol Opt Phys 92(1):1–13. https://doi.org/10.1103/PhysRevA.92.012325arXiv:1504.06030

    Article  CAS  Google Scholar 

  72. Jeffrey E, Sank D, Mutus JY, White TC, Kelly J, Barends R, Chen Y, Chen Z, Chiaro B, Dunsworth A, Megrant A, O’Malley PJ, Neill C, Roushan P, Vainsencher A, Wenner J, Cleland AN, Martinis JM (2014) Fast accurate state measurement with superconducting qubits. Phys Rev Lett 112(19):1–5. https://doi.org/10.1103/PhysRevLett.112.190504

    Article  CAS  Google Scholar 

  73. Bronn NT, Magesan E, Masluk NA, Chow JM, Gambetta JM, Steffen M (2015) Reducing spontaneous emission in circuit quantum electrodynamics by a combined readout/filter technique. IEEE Trans Appl Supercond. https://doi.org/10.1109/TASC.2015.2456109arXiv:1504.04353

    Article  Google Scholar 

  74. Walter T, Kurpiers P, Gasparinetti S, Magnard P, Potočnik A, Salathé Y, Pechal M, Mondal M, Oppliger M, Eichler C, Wallraff A (2017) Rapid high-fidelity single-shot dispersive readout of superconducting qubits. Phys Rev Appl 7(5):1–11. https://doi.org/10.1103/PhysRevApplied.7.054020

    Article  Google Scholar 

  75. Sunada Y, Kono S, Ilves J, Tamate S, Sugiyama T, Tabuchi Y, Nakamura Y (2022) Fast readout and reset of a superconducting qubit coupled to a resonator with an intrinsic Purcell filter. Phys Rev Appl 10(1):1. https://doi.org/10.1103/physrevapplied.17.044016arXiv:2202.06202

    Article  CAS  Google Scholar 

  76. Jerger M, Poletto S, MacHa P, Hübner U, Il’Ichev E, Ustinov AV (2012) Frequency division multiplexing readout and simultaneous manipulation of an array of flux qubits. Appl Phys Lett 101(4):2–5. https://doi.org/10.1063/1.4739454arXiv:1205.6375

    Article  CAS  Google Scholar 

  77. Dicarlo L, Chow JM, Gambetta JM, Bishop LS, Johnson BR, Schuster DI, Majer J, Blais A, Frunzio L, Girvin SM, Schoelkopf RJ (2009) Demonstration of two-qubit algorithms with a superconducting quantum processor. Nature 460(7252):240–244. https://doi.org/10.1038/nature08121arXiv:0903.2030

    Article  CAS  Google Scholar 

  78. Barends R, Kelly J, Megrant A, Veitia A, Sank D, Jeffrey E, White TC, Mutus J, Fowler AG, Campbell B, Chen Y, Chen Z, Chiaro B, Dunsworth A, Neill C, O’Malley P, Roushan P, Vainsencher A, Wenner J, Korotkov AN, Cleland AN, Martinis JM (2014) Superconducting quantum circuits at the surface code threshold for fault tolerance. Nature 508(7497):500–503. https://doi.org/10.1038/nature13171

    Article  CAS  Google Scholar 

  79. Caldwell SA, Didier N, Ryan CA, Sete EA (2018) Parametrically activated entangling gates using transmon qubits. Phys Rev Appl 10(3):1–8. https://doi.org/10.1103/PhysRevApplied.10.034050arXiv:1706.06562

    Article  Google Scholar 

  80. Patterson A, Rahamim J, Tsunoda T, Spring P, Jebari S, Ratter K, Mergenthaler M, Tancredi G, Vlastakis B, Esposito M et al (2019) Calibration of a cross-resonance two-qubit gate between directly coupled transmons. Phys Rev Appl 12(6):064013

    CAS  Google Scholar 

  81. Reagor M, Paik H, Catelani G, Sun L, Axline C, Holland E, Pop IM, Masluk NA, Brecht T, Frunzio L et al (2013) Reaching 10 ms single photon lifetimes for superconducting aluminum cavities. Appl Phys Lett 102(19):192604

    Google Scholar 

  82. Suri B (2015) Transmon qubits coupled to superconducting lumped element resonators. Ph.D. thesis, University of Maryland, College Park

  83. Sears AP, Petrenko A, Catelani G, Sun L, Paik H, Kirchmair G, Frunzio L, Glazman LI, Girvin SM, Schoelkopf RJ (2012) Photon shot noise dephasing in the strong-dispersive limit of circuit QED. Phys Rev B 86(18):180504. https://doi.org/10.1103/PhysRevB.86.180504. Accessed 21 May 2022

  84. Gambetta J, Blais A, Schuster DI, Wallraff A, Frunzio L, Majer J, Devoret MH, Girvin SM, Schoelkopf RJ (2006) Qubit–photon interactions in a cavity: measurement-induced dephasing and number splitting. Phys Rev A 74(4):042318. https://doi.org/10.1103/PhysRevA.74.042318. Accessed 21 May 2022

  85. Yeh JH, Lefebvre J, Premaratne S, Wellstood FC, Palmer BS (2017) Microwave attenuators for use with quantum devices below 100 mK. J Appl Phys. https://doi.org/10.1063/1.4984894arXiv:1703.01285

    Article  Google Scholar 

  86. ...Ye Y, Cao S, Wu Y, Chen X, Zhu Q, Li S, Chen F, Gong M, Zha C, Huang HL, Zhao Y, Wang S, Guo S, Qian H, Liang F, Lin J, Xu Y, Guo C, Sun L, Li N, Deng H, Zhu X, Pan JW (2021) Realization of high-fidelity controlled-phase gates in extensible superconducting qubits design with a tunable coupler. Chin Phys Lett. https://doi.org/10.1088/0256-307X/38/10/100301

    Article  Google Scholar 

  87. Ithier G, Collin E, Joyez P, Meeson PJ, Vion D, Esteve D, Chiarello F, Shnirman A, Makhlin Y, Schriefl J, Schön G (2005) Decoherence in a superconducting quantum bit circuit. Phys Rev B 72(13):134519. https://doi.org/10.1103/PhysRevB.72.134519 (Accessed 2022-05-20)

    Article  CAS  Google Scholar 

  88. Catelani G, Koch J, Frunzio L, Schoelkopf RJ, Devoret MH, Glazman LI (2011) Quasiparticle relaxation of superconducting qubits in the presence of flux. Phys Rev Lett 106(7):077002. https://doi.org/10.1103/PhysRevLett.106.077002 (Accessed 2022-05-20)

    Article  CAS  Google Scholar 

  89. Córcoles AD, Chow JM, Gambetta JM, Rigetti C, Rozen JR, Keefe GA, Beth Rothwell M, Ketchen MB, Steffen M (2011) Protecting superconducting qubits from radiation. Appl Phys Lett 99(18):181906. https://doi.org/10.1063/1.3658630 (Accessed 2022-05-20)

    Article  CAS  Google Scholar 

  90. Koch J, Yu TM, Gambetta J, Houck AA, Schuster DI, Majer J, Blais A, Devoret MH, Girvin SM, Schoelkopf RJ (2007) Charge-insensitive qubit design derived from the Cooper pair box. Phys Rev A 76(4):042319. https://doi.org/10.1103/PhysRevA.76.042319 (Accessed 2015-04-07)

    Article  CAS  Google Scholar 

  91. Wang Z, Shankar S, Minev ZK, Campagne-Ibarcq P, Narla A, Devoret MH (2019) Cavity attenuators for superconducting qubits. Phys Rev Appl 11(1):014031. https://doi.org/10.1103/PhysRevApplied.11.014031 (Accessed 2022-05-21)

    Article  CAS  Google Scholar 

  92. Hutchings MD, Hertzberg JB, Liu Y, Bronn NT, Keefe GA, Brink M, Chow JM, Plourde BLT (2017) Tunable superconducting qubits with flux-independent coherence. Phys Rev Appl 8(4):044003. https://doi.org/10.1103/PhysRevApplied.8.044003 (Accessed 2022-05-20)

    Article  Google Scholar 

  93. Caldwell SA, Didier N, Ryan CA, Sete EA, Hudson A, Karalekas P, Manenti R, da Silva MP, Sinclair R, Acala E, Alidoust N, Angeles J, Bestwick A, Block M, Bloom B, Bradley A, Bui C, Capelluto L, Chilcott R, Cordova J, Crossman G, Curtis M, Deshpande S, Bouayadi TE, Girshovich D, Hong S, Kuang K, Lenihan M, Manning T, Marchenkov A, Marshall J, Maydra R, Mohan Y, O’Brien W, Osborn C, Otterbach J, Papageorge A, Paquette J-P, Pelstring M, Polloreno A, Prawiroatmodjo G, Rawat V, Reagor M, Renzas R, Rubin N, Russell D, Rust M, Scarabelli D, Scheer M, Selvanayagam M, Smith R, Staley A, Suska M, Tezak N, Thompson DC, To T-W, Vahidpour M, Vodrahalli N, Whyland T, Yadav K, Zeng W, Rigetti C (2018) Parametrically activated entangling gates using transmon qubits. Phys Rev Appl 10(3):034050. https://doi.org/10.1103/PhysRevApplied.10.034050 (Accessed 2022-05-20)

    Article  CAS  Google Scholar 

  94. DiCarlo L, Chow JM, Gambetta JM, Bishop LS, Johnson BR, Schuster DI, Majer J, Blais A, Frunzio L, Girvin SM, Schoelkopf RJ (2009) Demonstration of two-qubit algorithms with a superconducting quantum processor. Nature 460(7252):240–244. https://doi.org/10.1038/nature08121 (Accessed 2022-05-20)

    Article  CAS  Google Scholar 

  95. Wallraff A, Schuster DI, Blais A, Frunzio L, Majer J, Devoret MH, Girvin SM, Schoelkopf RJ (2005) Approaching unit visibility for control of a superconducting qubit with dispersive readout. Phys Rev Lett 95(6):060501. https://doi.org/10.1103/PhysRevLett.95.060501 (Accessed 2022-05-20)

    Article  CAS  Google Scholar 

  96. Vijay R, Slichter DH, Siddiqi I (2011) Observation of quantum jumps in a superconducting artificial atom. Phys Rev Lett 106(11):110502. https://doi.org/10.1103/PhysRevLett.106.110502 (Accessed 2022-05-20)

    Article  CAS  Google Scholar 

  97. Walter T, Kurpiers P, Gasparinetti S, Magnard P, Potonik A, Salathé Y, Pechal M, Mondal M, Oppliger M, Eichler C, Wallraff A (2017) Rapid high-fidelity single-shot dispersive readout of superconducting qubits. Phys Rev Appl 7(5):054020. https://doi.org/10.1103/PhysRevApplied.7.054020 (Accessed 2022-05-20)

    Article  Google Scholar 

  98. Aumentado J (2020) Superconducting parametric amplifiers: the state of the art in Josephson parametric amplifiers. IEEE Microw Mag 21(8):45–59. https://doi.org/10.1109/MMM.2020.2993476 (conference name: IEEE microwave magazine)

    Article  Google Scholar 

  99. Serniak K, Diamond S, Hays M, Fatemi V, Shankar S, Frunzio L, Schoelkopf RJ, Devoret MH (2019) Direct dispersive monitoring of charge parity in offset-charge-sensitive transmons. Phys Rev Appl 12(1):014052. https://doi.org/10.1103/PhysRevApplied.12.014052. Accessed 22 May 2022

  100. Parma V (2014). Cryostat design CERN. https://doi.org/10.5170/CERN-2014-005.353. http://cds.cern.ch/record/1974062. Accessed 20 May 2022

  101. Gambetta JM, Motzoi F, Merkel ST, Wilhelm FK (2011) Analytic control methods for high-fidelity unitary operations in a weakly nonlinear oscillator. Phys Rev A At Mol Opt Phys 83(1):1–13. https://doi.org/10.1103/PhysRevA.83.012308arXiv:1011.1949

    Article  Google Scholar 

  102. Motzoi F, Gambetta JM, Rebentrost P, Wilhelm FK (2009) Simple pulses for elimination of leakage in weakly nonlinear qubits. Phys Rev Lett 103(11):1–4. https://doi.org/10.1103/PhysRevLett.103.110501arXiv:0901.0534

    Article  CAS  Google Scholar 

  103. Motzoi F, Wilhelm FK (2013) Improving frequency selection of driven pulses using derivative-based transition suppression. Phys Rev A At Mol Opt Phys. https://doi.org/10.1103/PhysRevA.88.062318arXiv:1310.8363

    Article  Google Scholar 

  104. Blais A, Gambetta J, Wallraff A, Schuster DI, Girvin SM, Devoret MH, Schoelkopf RJ (2007) Quantum-information processing with circuit quantum electrodynamics. Phys Rev A At Mol Opt Phys 75(3):1–21. https://doi.org/10.1103/PhysRevA.75.032329arXiv:cond-mat/0612038

    Article  CAS  Google Scholar 

  105. McKay DC, Wood CJ, Sheldon S, Chow JM, Gambetta JM (2017) Efficient Z gates for quantum computing. Phys Rev A 96(2):1–8. https://doi.org/10.1103/PhysRevA.96.022330arXiv:1612.00858

    Article  Google Scholar 

  106. Johnson BR, Da Silva MP, Ryan CA, Kimmel S, Chow JM, Ohki TA (2015) Demonstration of robust quantum gate tomography via randomized benchmarking. New J Phys. https://doi.org/10.1088/1367-2630/17/11/113019arXiv:1505.06686

    Article  Google Scholar 

  107. Niskanen AO, Harrabi K, Yoshihara F, Nakamura Y, Lloyd S, Tsai JS (2007) Quantum coherent tunable coupling of superconducting qubits. Science 316(5825):723–726. https://doi.org/10.1126/science.1141324

    Article  CAS  Google Scholar 

  108. Harris R, Berkley AJ, Johnson MW, Bunyk P, Govorkov S, Thom MC, Uchaikin S, Wilson AB, Chung J, Holtham E, Biamonte JD, Smirnov AY, Amin MHS, Maassen Van Den Brink A (2007) Sign- and magnitude-tunable coupler for superconducting flux qubits. Phys Rev Lett 98(17):2–5. https://doi.org/10.1103/PhysRevLett.98.177001arXiv:0608253 [cond-mat]

    Article  CAS  Google Scholar 

  109. Van Der Ploeg SHW, Izmalkov A, Van Den Brink AM, Hübner U, Grajcar M, Il’ichev E, Meyer HG, Zagoskin AM (2007) Controllable coupling of superconducting flux qubits. Phys Rev Lett 98(5):42–45. https://doi.org/10.1103/PhysRevLett.98.057004arXiv:0605588 [cond-mat]

    Article  CAS  Google Scholar 

  110. Hime T (2006) Solid-state qubits with current-controlled coupling. Science 597(December):1427–1430

    Google Scholar 

  111. Allman MS, Whittaker JD, Castellanos-Beltran M, Cicak K, Da Silva F, Defeo MP, Lecocq F, Sirois A, Teufel JD, Aumentado J, Simmonds RW (2013) Tunable resonant and nonresonant interactions between a phase qubit and LC resonator. Phys Rev Lett 112(12):1–6. https://doi.org/10.1103/PhysRevLett.112.123601

    Article  CAS  Google Scholar 

  112. Bialczak RC, Ansmann M, Hofheinz M, Lenander M, Lucero E, Neeley M, O’Connell AD, Sank D, Wang H, Weides M, Wenner J, Yamamoto T, Cleland AN, Martinis JM (2011) Fast tunable coupler for superconducting qubits. Phys Rev Lett 106(6):9–12. https://doi.org/10.1103/PhysRevLett.106.060501

    Article  CAS  Google Scholar 

  113. Chen Y, Neill C, Roushan P, Leung N, Fang M, Barends R, Kelly J, Campbell B, Chen Z, Chiaro B, Dunsworth A, Jeffrey E, Megrant A, Mutus JY, O’Malley PJJ, Quintana CM, Sank D, Vainsencher A, Wenner J, White TC, Geller MR, Cleland AN, Martinis JM (2014) Qubit architecture with high coherence and fast tunable coupling. Phys Rev Lett 113(22):1–5. https://doi.org/10.1103/PhysRevLett.113.220502arXiv:1402.7367

    Article  CAS  Google Scholar 

  114. Geller MR, Donate E, Chen Y, Fang MT, Leung N, Neill C, Roushan P, Martinis JM (2015) Tunable coupler for superconducting Xmon qubits: perturbative nonlinear model. Phys Rev A At Mol Opt Phys 92(1):1–9. https://doi.org/10.1103/PhysRevA.92.012320arXiv:1405.1915

    Article  CAS  Google Scholar 

  115. Baust A, Hoffmann E, Haeberlein M, Schwarz MJ, Eder P, Goetz J, Wulschner F, Xie E, Zhong L, Quijandría F, Peropadre B, Zueco D, García Ripoll JJ, Solano E, Fedorov K, Menzel EP, Deppe F, Marx A, Gross R (2015) Tunable and switchable coupling between two superconducting resonators. Phys Rev B Condens Matter Mater Phys 91(1):1–6. https://doi.org/10.1103/PhysRevB.91.014515arXiv:1405.1969

    Article  CAS  Google Scholar 

  116. ...Wulschner F, Goetz J, Koessel FR, Hoffmann E, Baust A, Eder P, Fischer M, Haeberlein M, Schwarz MJ, Pernpeintner M, Xie E, Zhong L, Zollitsch CW, Peropadre B, Ripoll JJG, Solano E, Fedorov KG, Menzel EP, Deppe F, Marx A, Gross R (2016) Tunable coupling of transmission-line microwave resonators mediated by an rf SQUID. EPJ Quantum Technol. https://doi.org/10.1140/epjqt/s40507-016-0048-2arXiv:1508.06758

    Article  Google Scholar 

  117. Yan F, Krantz P, Sung Y, Kjaergaard M, Campbell DL, Orlando TP, Gustavsson S, Oliver WD (2018) Tunable Coupling scheme for implementing high-fidelity two-qubit gates. Phys Rev Appl 10(5):1. https://doi.org/10.1103/PhysRevApplied.10.054062arXiv:1803.09813

    Article  Google Scholar 

  118. Collodo MC, Herrmann J, Lacroix N, Andersen CK, Remm A, Lazar S, Besse JC, Walter T, Wallraff A, Eichler C (2020) Implementation of conditional phase gates based on tunable ZZ interactions. Phys Rev Lett 125(24):1–6. https://doi.org/10.1103/PhysRevLett.125.240502arXiv:2005.08863

    Article  Google Scholar 

  119. Xu Y, Chu J, Yuan J, Qiu J, Zhou Y, Zhang L, Tan X, Yu Y, Liu S, Li J, Yan F, Yu D (2020) High-fidelity, high-scalability two-qubit gate scheme for superconducting qubits. Phys Rev Lett 125(24):240503. https://doi.org/10.1103/PhysRevLett.125.240503arXiv:2006.11860

    Article  CAS  Google Scholar 

  120. Stehlik J, Zajac DM, Underwood DL, Phung T, Blair J, Carnevale S, Klaus D, Keefe GA, Carniol A, Kumph M, Steffen M, Dial OE (2021) Tunable coupling architecture for fixed-frequency transmon superconducting qubits. Phys Rev Lett 127(8):1–7. https://doi.org/10.1103/PhysRevLett.127.080505arXiv:arXiv:2101.07746v1

    Article  Google Scholar 

  121. Sung Y, Ding L, Braumüller J, Vepsäläinen A, Kannan B, Kjaergaard M, Greene A, Samach GO, McNally C, Kim D, Melville A, Niedzielski BM, Schwartz ME, Yoder JL, Orlando TP, Gustavsson S, Oliver WD (2021) Realization of high-fidelity CZ and ZZ-free iSWAP gates with a tunable coupler. Phys Rev X 11(2):1–28. https://doi.org/10.1103/PhysRevX.11.021058arXiv:2011.01261

    Article  Google Scholar 

  122. Sete EA, Chen AQ, Manenti R, Kulshreshtha S, Poletto S (2021) Floating tunable coupler for scalable quantum computing architectures. Phys Rev Appl. https://doi.org/10.1103/PhysRevApplied.15.064063arXiv:2103.07030

    Article  Google Scholar 

  123. Srinivasan SJ, Hoffman AJ, Gambetta JM, Houck AA (2011) Tunable coupling in circuit quantum electrodynamics using a superconducting charge qubit with a V-Shaped energy level diagram. Phys Rev Lett 106(8):1–4. https://doi.org/10.1103/PhysRevLett.106.083601

    Article  CAS  Google Scholar 

  124. Lu Y, Chakram S, Leung N, Earnest N, Naik RK, Huang Z, Groszkowski P, Kapit E, Koch J, Schuster DI (2017) Universal stabilization of a parametrically coupled qubit. Phys Rev Lett 119(15):1–6. https://doi.org/10.1103/PhysRevLett.119.150502arXiv:1707.01491

    Article  Google Scholar 

  125. Foxen B, Neill C, Dunsworth A, Roushan P, Chiaro B, Megrant A, Kelly J, Chen Z, Satzinger K, Barends R, Arute F, Arya K, Babbush R, Bacon D, Bardin JC, Boixo S, Buell D, Burkett B, Chen Y, Collins R, Farhi E, Fowler A, Gidney C, Giustina M, Graff R, Harrigan M, Huang T, Isakov SV, Jeffrey E, Jiang Z, Kafri D, Kechedzhi K, Klimov P, Korotkov A, Kostritsa F, Landhuis D, Lucero E, Mcclean J, Mcewen M, Mi X, Mohseni M, Mutus JY, Naaman O, Neeley M, Niu M, Petukhov A, Quintana C, Rubin N, Sank D, Smelyanskiy V, Vainsencher A, White TC, Yao Z, Yeh P, Zalcman A, Neven H, Martinis JM (2020) Demonstrating a continuous set of two-qubit gates for near-term quantum algorithms. Phys Rev Lett 125(12):120504. https://doi.org/10.1103/PhysRevLett.125.120504arXiv:2001.08343

    Article  CAS  Google Scholar 

  126. Xu X, Ansari MH (2021) ZZ freedom in two-qubit gates. Phys Rev Appl 15(6):1. https://doi.org/10.1103/PhysRevApplied.15.064074arXiv:2009.00485

    Article  Google Scholar 

  127. Neeley M, Bialczak RC, Lenander M, Lucero E, Mariantoni M, Oconnell AD, Sank D, Wang H, Weides M, Wenner J, Yin Y, Yamamoto T, Cleland AN, Martinis JM (2010) Generation of three-qubit entangled states using superconducting phase qubits. Nature 467(7315):570–573. https://doi.org/10.1038/nature09418arXiv:1004.4246

    Article  CAS  Google Scholar 

  128. Dewes A, Ong FR, Schmitt V, Lauro R, Boulant N, Bertet P, Vion D, Esteve D (2012) Characterization of a two-transmon processor with individual single-shot qubit readout. Phys Rev Lett 108(5):1–5. https://doi.org/10.1103/PhysRevLett.108.057002arXiv:1109.6735

    Article  CAS  Google Scholar 

  129. Salathé Y, Mondal M, Oppliger M, Heinsoo J, Kurpiers P, Potočnik A, Mezzacapo A, Las Heras U, Lamata L, Solano E, Filipp S, Wallraff A (2015) Digital quantum simulation of spin models with circuit quantum electrodynamics. Phys Rev X 5(2):1–12. https://doi.org/10.1103/PhysRevX.5.021027arXiv:1502.06778

    Article  CAS  Google Scholar 

  130. Chow JM (2010) Quantum information processing with superconducting qubits 1–1, Publisher: Proquest, Umi Dissertation Publishing, Language: English, ISBN-10: 1243793198, ISBN-13: 978-1243793195. https://doi.org/10.1109/CLEOE-IQEC.2007.4386783

  131. Dicarlo L, Reed MD, Sun L, Johnson BR, Chow JM, Gambetta JM, Frunzio L, Girvin SM, Devoret MH, Schoelkopf RJ (2010) Preparation and measurement of three-qubit entanglement in a superconducting circuit. Nature 467(7315):574–578. https://doi.org/10.1038/nature09416arXiv:1004.4324

    Article  CAS  Google Scholar 

  132. Kelly J, Barends R, Campbell B, Chen Y, Chen Z, Chiaro B, Dunsworth A, Fowler AG, Hoi IC, Jeffrey E, Megrant A, Mutus J, Neill C, O’Malley PJJ, Quintana C, Roushan P, Sank D, Vainsencher A, Wenner J, White TC, Cleland AN, Martinis JM (2014) Optimal quantum control using randomized benchmarking. Phys Rev Lett 112(24):1–5. https://doi.org/10.1103/PhysRevLett.112.240504

    Article  CAS  Google Scholar 

  133. Martinis JM, Geller MR (2014) Fast adiabatic qubit gates using only z control. Phys Rev A At Mol Opt Phys 90(2):1–9. https://doi.org/10.1103/PhysRevA.90.022307

    Article  CAS  Google Scholar 

  134. Rol MA, Battistel F, Malinowski FK, Bultink CC, Tarasinski BM, Vollmer R, Haider N, Muthusubramanian N, Bruno A, Terhal BM, Dicarlo L (2019) Fast, high-fidelity conditional-phase gate exploiting leakage interference in weakly anharmonic superconducting qubits. Phys Rev Lett 123(12):120502. https://doi.org/10.1103/PhysRevLett.123.120502

    Article  CAS  Google Scholar 

  135. Negîrneac V, Ali H, Muthusubramanian N, Battistel F, Sagastizabal R, Moreira MS, Marques JF, Vlothuizen WJ, Beekman M, Zachariadis C, Haider N, Bruno A, Dicarlo L (2021) High-fidelity controlled-Z Gate with maximal intermediate leakage operating at the speed limit in a superconducting quantum processor. Phys Rev Lett 126(22):1–13. https://doi.org/10.1103/PhysRevLett.126.220502arXiv:2008.07411

    Article  Google Scholar 

  136. Chow JM, Córcoles AD, Gambetta JM, Rigetti C, Johnson BR, Smolin JA, Rozen JR, Keefe GA, Rothwell MB, Ketchen MB, Steffen M (2011) Simple all-microwave entangling gate for fixed-frequency superconducting qubits. Phys Rev Lett 107(8):1–5. https://doi.org/10.1103/PhysRevLett.107.080502arXiv:1106.0553

    Article  CAS  Google Scholar 

  137. Chow JM, Gambetta JM, Córcoles AD, Merkel ST, Smolin JA, Rigetti C, Poletto S, Keefe GA, Rothwell MB, Rozen JR, Ketchen MB, Steffen M (2012) Universal quantum gate set approaching fault-tolerant thresholds with superconducting qubits. Phys Rev Lett 109(6):1–5. https://doi.org/10.1103/PhysRevLett.109.060501arXiv:1202.5344

    Article  CAS  Google Scholar 

  138. Córcoles AD, Gambetta JM, Chow JM, Smolin JA, Ware M, Strand J, Plourde BLT, Steffen M (2013) Process verification of two-qubit quantum gates by randomized benchmarking. Phys Rev A At Mol Opt Phys 87(3):1–4. https://doi.org/10.1103/PhysRevA.87.030301arXiv:1210.7011

    Article  CAS  Google Scholar 

  139. Chow JM, Gambetta JM, Magesan E, Abraham DW, Cross AW, Johnson BR, Masluk NA, Ryan CA, Smolin JA, Srinivasan SJ, Steffen M (2014) Implementing a strand of a scalable fault-tolerant quantum computing fabric. Nat Commun 5:1–9. https://doi.org/10.1038/ncomms5015arXiv:1311.6330

    Article  CAS  Google Scholar 

  140. Córcoles AD, Magesan E, Srinivasan SJ, Cross AW, Steffen M, Gambetta JM, Chow JM (2015) Demonstration of a quantum error detection code using a square lattice of four superconducting qubits. Nat Commun. https://doi.org/10.1038/ncomms7979

    Article  Google Scholar 

  141. Sheldon S, Magesan E, Chow JM, Gambetta JM (2016) Procedure for systematically tuning up cross-talk in the cross-resonance gate. Phys Rev A 93(6):1–5. https://doi.org/10.1103/PhysRevA.93.060302arXiv:1603.04821

    Article  CAS  Google Scholar 

  142. Takita M, Cross AW, Córcoles AD, Chow JM, Gambetta JM (2017) Experimental demonstration of fault-tolerant state preparation with superconducting qubits. Phys Rev Lett 119(18):1–5. https://doi.org/10.1103/PhysRevLett.119.180501arXiv:1705.09259

    Article  Google Scholar 

  143. Tripathi V, Khezri M, Korotkov AN (2019) Operation and intrinsic error budget of a two-qubit cross-resonance gate. Phys Rev A 100(1):1–21. https://doi.org/10.1103/PhysRevA.100.012301arXiv:1902.09054

    Article  Google Scholar 

  144. Magesan E, Gambetta JM (2020) Effective Hamiltonian models of the cross-resonance gate. Phys Rev A. https://doi.org/10.1103/PhysRevA.101.052308arXiv:1804.04073

    Article  Google Scholar 

  145. Malekakhlagh M, Magesan E, McKay DC (2020) First-principles analysis of cross-resonance gate operation. Phys Rev A 102(4):1–28. https://doi.org/10.1103/PhysRevA.102.042605

    Article  Google Scholar 

  146. Kirchhoff S, Keßler T, Liebermann PJ, Assémat E, Machnes S, Motzoi F, Wilhelm FK (2018) Optimized cross-resonance gate for coupled transmon systems. Phys Rev A 97(4):1–9. https://doi.org/10.1103/PhysRevA.97.042348arXiv:1701.01841

    Article  Google Scholar 

  147. Sundaresan N, Lauer I, Pritchett E, Magesan E, Jurcevic P, Gambetta JM (2020) Reducing unitary and spectator errors in cross resonance with optimized rotary echoes. PRX Quantum 1(2):1. https://doi.org/10.1103/prxquantum.1.020318arXiv:2007.02925

    Article  Google Scholar 

  148. Ku J, Xu X, Brink M, McKay DC, Hertzberg JB, Ansari MH, Plourde BLT (2020) Suppression of unwanted ZZ interactions in a hybrid two-qubit system. Phys Rev Lett 125(20):200504. https://doi.org/10.1103/PhysRevLett.125.200504arXiv:2003.02775

    Article  CAS  Google Scholar 

  149. Heya K, Kanazawa N (2021) Cross-cross resonance gate. PRX Quantum 2(4):1. https://doi.org/10.1103/prxquantum.2.040336arXiv:2103.00024

    Article  Google Scholar 

  150. Kandala A, Wei KX, Srinivasan S, Magesan E, Carnevale S, Keefe GA, Klaus D, Dial O, McKay DC (2021) Demonstration of a high-fidelity cnot gate for fixed-frequency transmons with engineered suppression. Phys Rev Lett 127(13):130501. https://doi.org/10.1103/PhysRevLett.127.130501arXiv:2011.07050

    Article  CAS  Google Scholar 

  151. Cross AW, Gambetta JM (2015) Optimized pulse shapes for a resonator-induced phase gate. Phys Rev A At Mol Opt Phys 91(3):1–12. https://doi.org/10.1103/PhysRevA.91.032325arXiv:1411.5436

    Article  CAS  Google Scholar 

  152. Paik H, Mezzacapo A, Sandberg M, McClure DT, Abdo B, Córcoles AD, Dial O, Bogorin DF, Plourde BLT, Steffen M, Cross AW, Gambetta JM, Chow JM (2016) Experimental demonstration of a resonator-induced phase gate in a multiqubit circuit-QED system. Phys Rev Lett 117(25):1–5. https://doi.org/10.1103/PhysRevLett.117.250502arXiv:1606.00685

    Article  Google Scholar 

  153. Bertet P, Harmans CJPM, Mooij JE (2006) Parametric coupling for superconducting qubits. Phys Rev B Condens Matter Mater Phys 73(6):1–6. https://doi.org/10.1103/PhysRevB.73.064512arXiv:0509799 [cond-mat]

    Article  CAS  Google Scholar 

  154. McKay DC, Filipp S, Mezzacapo A, Magesan E, Chow JM, Gambetta JM (2016) Universal gate for fixed-frequency qubits via a tunable bus. Phys Rev Appl 6(6):1–10. https://doi.org/10.1103/PhysRevApplied.6.064007arXiv:1604.03076

    Article  Google Scholar 

  155. Mundada P, Zhang G, Hazard T, Houck A (2019) Suppression of qubit crosstalk in a tunable coupling superconducting circuit. Phys Rev Appl 12(5):1–10. https://doi.org/10.1103/PhysRevApplied.12.054023arXiv:1810.04182

    Article  Google Scholar 

  156. Reagor M, Osborn CB, Tezak N, Staley A, Prawiroatmodjo G, Scheer M, Alidoust N, Sete EA, Didier N, Da Silva MP, Acala E, Angeles J, Bestwick A, Block M, Bloom B, Bradley A, Bui C, Caldwell S, Capelluto L, Chilcott R, Cordova J, Crossman G, Curtis M, Deshpande S, El Bouayadi T, Girshovich D, Hong S, Hudson A, Karalekas P, Kuang K, Lenihan M, Manenti R, Manning T, Marshall J, Mohan Y, O’Brien W, Otterbach J, Papageorge A, Paquette JP, Pelstring M, Polloreno A, Rawat V, Ryan CA, Renzas R, Rubin N, Russel D, Rust M, Scarabelli D, Selvanayagam M, Sinclair R, Smith R, Suska M, To TW, Vahidpour M, Vodrahalli N, Whyland T, Yadav K, Zeng W, Rigetti CT, (2018) Demonstration of universal parametric entangling gates on a multi-qubit lattice. Sci Adv. https://doi.org/10.1126/sciadv.aao3603arXiv:1706.06570

  157. Hong SS, Papageorge AT, Sivarajah P, Crossman G, Didier N, Polloreno AM, Sete EA, Turkowski SW, Da Silva MP, Johnson BR (2020) Demonstration of a parametrically activated entangling gate protected from flux noise. Phys Rev A 101(1):12302. https://doi.org/10.1103/PhysRevA.101.012302arXiv:1901.08035

    Article  CAS  Google Scholar 

  158. Haus HA (2000) Electromagnetic noise and quantum optical measurements. Springer, Berlin

    Google Scholar 

  159. Clerk AA, Devoret MH, Girvin SM, Marquardt F, Schoelkopf RJ (2010) Introduction to quantum noise, measurement, and amplification. Rev Mod Phys 82(2):1155

    Google Scholar 

  160. Caves CM (1982) Quantum limits on noise in linear amplifiers. Phys Rev D 26(8):1817

    Google Scholar 

  161. Flurin E (2014) The Josephson mixer: a swiss army knife for microwave quantum optics. Ph.D. thesis, Ecole normale supérieure-ENS PARIS

  162. Yurke B, Corruccini L, Kaminsky P, Rupp L, Smith A, Silver A, Simon R, Whittaker E (1989) Observation of parametric amplification and deamplification in a Josephson parametric amplifier. Phys Rev A 39(5):2519

    CAS  Google Scholar 

  163. Wahlsten S, Rudner S, Claeson T (1978) Arrays of Josephson tunnel junctions as parametric amplifiers. J Appl Phys 49(7):4248–4263

    Google Scholar 

  164. Olsson H, Claeson T (1988) Low-noise Josephson parametric amplification and oscillations at 9 GHz. J Appl Phys 64(10):5234–5243

    Google Scholar 

  165. Siddiqi I, Vijay R, Pierre F, Wilson C, Metcalfe M, Rigetti C, Frunzio L, Devoret M (2004) Rf-driven Josephson bifurcation amplifier for quantum measurement. Phys Rev Lett 93(20):207002

    CAS  Google Scholar 

  166. Tholén EA, Ergül A, Doherty EM, Weber FM, Grégis F, Haviland DB (2007) Nonlinearities and parametric amplification in superconducting coplanar waveguide resonators. Appl Phys Lett 90(25):253509

    Google Scholar 

  167. Dykman M, Maloney C, Smelyanskiy V, Silverstein M (1998) Fluctuational phase-flip transitions in parametrically driven oscillators. Phys Rev E 57(5):5202

    CAS  Google Scholar 

  168. Yurke B, Kaminsky P, Miller R, Whittaker E, Smith A, Silver A, Simon R (1988) Observation of 4.2-k equilibrium-noise squeezing via a Josephson-parametric amplifier. Phys Rev Lett 60(9):764

    CAS  Google Scholar 

  169. Wustmann W, Shumeiko V (2013) Parametric resonance in tunable superconducting cavities. Phys Rev B 87(18):184501

    Google Scholar 

  170. Wustmann W, Shumeiko V (2017) Nondegenerate parametric resonance in a tunable superconducting cavity. Phys Rev Appl 8(2):024018

    Google Scholar 

  171. Yamamoto T, Inomata K, Watanabe M, Matsuba K, Miyazaki T, Oliver WD, Nakamura Y, Tsai J (2008) Flux-driven Josephson parametric amplifier. Appl Phys Lett 93(4):042510

    Google Scholar 

  172. Castellanos-Beltran M, Irwin K, Hilton G, Vale L, Lehnert K (2008) Amplification and squeezing of quantum noise with a tunable Josephson metamaterial. Nat Phys 4(12):929–931

    Google Scholar 

  173. Wilson C, Duty T, Sandberg M, Persson F, Shumeiko V, Delsing P (2010) Photon generation in an electromagnetic cavity with a time-dependent boundary. Phys Rev Lett 105(23):233907

    CAS  Google Scholar 

  174. Sundqvist K, Kintaş S, Simoen M, Krantz P, Sandberg M, Wilson C, Delsing P (2013) The pumpistor: a linearized model of a flux-pumped superconducting quantum interference device for use as a negative-resistance parametric amplifier. Appl Phys Lett 103(10):102603

    Google Scholar 

  175. Sundqvist KM, Delsing P (2014) Negative-resistance models for parametrically flux-pumped superconducting quantum interference devices. EPJ Quantum Technol 1(1):1–21

    Google Scholar 

  176. Bergeal N, Vijay R, Manucharyan V, Siddiqi I, Schoelkopf R, Girvin S, Devoret M (2010) Analog information processing at the quantum limit with a Josephson ring modulator. Nat Phys 6(4):296–302

    CAS  Google Scholar 

  177. Bergeal N, Schackert F, Metcalfe M, Vijay R, Manucharyan V, Frunzio L, Prober D, Schoelkopf R, Girvin S, Devoret M (2010) Phase-preserving amplification near the quantum limit with a Josephson ring modulator. Nature 465(7294):64–68

    CAS  Google Scholar 

  178. Abdo B, Schackert F, Hatridge M, Rigetti C, Devoret M (2011) Josephson amplifier for qubit readout. Appl Phys Lett 99(16):162506

    Google Scholar 

  179. Abdo B, Kamal A, Devoret M (2013) Nondegenerate three-wave mixing with the Josephson ring modulator. Phys Rev B 87(1):014508

    Google Scholar 

  180. Liu G, Chien T-C, Cao X, Lanes O, Alpern E, Pekker D, Hatridge M (2017) Josephson parametric converter saturation and higher order effects. Appl Phys Lett 111(20):202603

    Google Scholar 

  181. Krantz P, Reshitnyk Y, Wustmann W, Bylander J, Gustavsson S, Oliver WD, Duty T, Shumeiko V, Delsing P (2013) Investigation of nonlinear effects in Josephson parametric oscillators used in circuit quantum electrodynamics. New J Phys 15(10):105002

    Google Scholar 

  182. Krantz P (2013) Parametrically pumped superconducting circuits. Chalmers Tekniska Hogskola (Sweden)

  183. Chen Y, Sank D, O’Malley P, White T, Barends R, Chiaro B, Kelly J, Lucero E, Mariantoni M, Megrant A et al (2012) Multiplexed dispersive readout of superconducting phase qubits. Appl Phys Lett 101(18):182601

    Google Scholar 

  184. Kelly J, Barends R, Fowler AG, Megrant A, Jeffrey E, White TC, Sank D, Mutus JY, Campbell B, Chen Y et al (2015) State preservation by repetitive error detection in a superconducting quantum circuit. Nature 519(7541):66–69

    CAS  Google Scholar 

  185. Jerger M, Poletto S, Macha P, Hübner U, Il’ichev E, Ustinov AV (2012) Frequency division multiplexing readout and simultaneous manipulation of an array of flux qubits. Appl Phys Lett 101(4):042604

    Google Scholar 

  186. Chapman BJ, Rosenthal EI, Kerckhoff J, Vale LR, Hilton GC, Lehnert K (2017) Single-sideband modulator for frequency domain multiplexing of superconducting qubit readout. Appl Phys Lett 110(16):162601

    Google Scholar 

  187. Roy T, Kundu S, Chand M, Vadiraj A, Ranadive A, Nehra N, Patankar MP, Aumentado J, Clerk A, Vijay R (2015) Broadband parametric amplification with impedance engineering: beyond the gain-bandwidth product. Appl Phys Lett 107(26):262601

    Google Scholar 

  188. Grebel J, Bienfait A, Dumur É, Chang H-S, Chou M-H, Conner C, Peairs G, Povey R, Zhong Y, Cleland A (2021) Flux-pumped impedance-engineered broadband Josephson parametric amplifier. Appl Phys Lett 118(14):142601

    CAS  Google Scholar 

  189. Lu Y, Xu W, Zuo Q, Pan J, Wei X, Jiang J, Li Z, Zhang K, Guo T, Wang S et al (2022) Broadband Josephson parametric amplifier using lumped-element transmission line impedance matching architecture. Appl Phys Lett 120(8):082601

    CAS  Google Scholar 

  190. Mutus JY, White TC, Barends R, Chen Y, Chen Z, Chiaro B, Dunsworth A, Jeffrey E, Kelly J, Megrant A et al (2014) Strong environmental coupling in a Josephson parametric amplifier. Appl Phys Lett 104(26):263513

    Google Scholar 

  191. Macklin C, O’Brien K, Hover D, Schwartz ME, Bolkhovsky V, Zhang X, Oliver WD, Siddiqi I (2015) A near-quantum-limited Josephson traveling-wave parametric amplifier. Science 350(6258):307–310

    CAS  Google Scholar 

  192. O’Brien K, Macklin C, Siddiqi I, Zhang X (2014) Resonant phase matching of Josephson junction traveling wave parametric amplifiers. Phys Rev Lett 113(15):157001

    Google Scholar 

  193. White T, Mutus J, Hoi I-C, Barends R, Campbell B, Chen Y, Chen Z, Chiaro B, Dunsworth A, Jeffrey E et al (2015) Traveling wave parametric amplifier with Josephson junctions using minimal resonator phase matching. Appl Phys Lett 106(24):242601

    Google Scholar 

  194. Planat L, Ranadive A, Dassonneville R, Martínez JP, Léger S, Naud C, Buisson O, Hasch-Guichard W, Basko DM, Roch N (2020) Photonic-crystal Josephson traveling-wave parametric amplifier. Phys Rev X 10(2):021021

    CAS  Google Scholar 

  195. Ho Eom B, Day PK, LeDuc HG, Zmuidzinas J (2012) A wideband, low-noise superconducting amplifier with high dynamic range. Nat Phys 8(8):623–627

    Google Scholar 

  196. Bockstiegel C, Gao J, Vissers M, Sandberg M, Chaudhuri S, Sanders A, Vale L, Irwin K, Pappas D (2014) Development of a broadband nbtin traveling wave parametric amplifier for mkid readout. J Low Temp Phys 176(3):476–482

    CAS  Google Scholar 

  197. Adamyan A, De Graaf S, Kubatkin S, Danilov A (2016) Superconducting microwave parametric amplifier based on a quasi-fractal slow propagation line. J Appl Phys 119(8):083901

    Google Scholar 

  198. Goldstein S, Kirsh N, Svetitsky E, Zamir Y, Hachmo O, de Oliveira CEM, Katz N (2020) Four wave-mixing in a microstrip kinetic inductance travelling wave parametric amplifier. Appl Phys Lett 116(15):152602

    CAS  Google Scholar 

  199. Blais A, Huang R-S, Wallraff A, Girvin SM, Schoelkopf RJ (2004) Cavity quantum electrodynamics for superconducting electrical circuits: an architecture for quantum computation. Phys Rev A 69(6):062320

    Google Scholar 

  200. Wei L, Liu Y-X, Nori F (2005) Quantum computation with Josephson qubits using a current-biased information bus. Phys Rev B 71(13):134506

    Google Scholar 

  201. Majer J, Chow J, Gambetta J, Koch J, Johnson B, Schreier J, Frunzio L, Schuster D, Houck AA, Wallraff A et al (2007) Coupling superconducting qubits via a cavity bus. Nature 449(7161):443–447

    CAS  Google Scholar 

  202. Renger M, Pogorzalek S, Chen Q, Nojiri Y, Inomata K, Nakamura Y, Partanen M, Marx A, Gross R, Deppe F et al (2021) Beyond the standard quantum limit for parametric amplification of broadband signals. npj Quantum Inf 7(1):1–7

    Google Scholar 

  203. Huang W, Zhou Y, Tao Z, Zhang L, Liu S, Chen Y, Yan T, Yu D (2021) A superconducting coplanar waveguide ring resonator as quantum bus for circuit quantum electrodynamics. Appl Phys Lett 118(18):184001

    CAS  Google Scholar 

  204. Song C, Xu K, Li H, Zhang Y-R, Zhang X, Liu W, Guo Q, Wang Z, Ren W, Hao J et al (2019) Generation of multicomponent atomic Schrödinger cat states of up to 20 qubits. Science 365(6453):574–577

    CAS  Google Scholar 

  205. Blais A, Grimsmo AL, Girvin SM, Wallraff A (2021) Circuit quantum electrodynamics. Rev Mod Phys 93(2):025005

    CAS  Google Scholar 

  206. Wallraff A, Schuster DI, Blais A, Frunzio L, Huang R-S, Majer J, Kumar S, Girvin SM, Schoelkopf RJ (2004) Strong coupling of a single photon to a superconducting qubit using circuit quantum electrodynamics. Nature 431(7005):162–167

    CAS  Google Scholar 

  207. Megrant A, Neill C, Barends R, Chiaro B, Chen Y, Feigl L, Kelly J, Lucero E, Mariantoni M, O’Malley PJ et al (2012) Planar superconducting resonators with internal quality factors above one million. Appl Phys Lett 100(11):113510

    Google Scholar 

  208. He Q, OuYang P, Gao H, He S, Li Y, Wang Y, Chen Y, Dai X, Wei L (2022) Low-loss superconducting aluminum microwave coplanar waveguide resonators on sapphires for the qubit readouts. Supercond Sci Technol 35(6):065017

    Google Scholar 

  209. Göppl M, Fragner A, Baur M, Bianchetti R, Filipp S, Fink JM, Leek PJ, Puebla G, Steffen L, Wallraff A (2008) Coplanar waveguide resonators for circuit quantum electrodynamics. J Appl Phys 104(11):113904

    Google Scholar 

  210. Carter FW, Khaire T, Chang C, Novosad V (2019) Low-loss single-photon nbn microwave resonators on si. Appl Phys Lett 115(9):092602

    Google Scholar 

  211. Vissers MR, Gao J, Wisbey DS, Hite DA, Tsuei CC, Corcoles AD, Steffen M, Pappas DP (2010) Low loss superconducting titanium nitride coplanar waveguide resonators. Appl Phys Lett 97(23):232509

    Google Scholar 

  212. O’Connell AD, Ansmann M, Bialczak RC, Hofheinz M, Katz N, Lucero E, McKenney C, Neeley M, Wang H, Weig EM et al (2008) Microwave dielectric loss at single photon energies and millikelvin temperatures. Appl Phys Lett 92(11):112903

    Google Scholar 

  213. Woods W, Calusine G, Melville A, Sevi A, Golden E, Kim DK, Rosenberg D, Yoder JL, Oliver WD (2019) Determining interface dielectric losses in superconducting coplanar-waveguide resonators. Phys Rev Appl 12(1):014012

    CAS  Google Scholar 

  214. Mazin BA, Sank D, McHugh S, Lucero EA, Merrill A, Gao J, Pappas D, Moore D, Zmuidzinas J (2010) Thin film dielectric microstrip kinetic inductance detectors. Appl Phys Lett 96(10):102504

    Google Scholar 

  215. Martinis JM, Cooper KB, McDermott R, Steffen M, Ansmann M, Osborn K, Cicak K, Oh S, Pappas DP, Simmonds RW et al (2005) Decoherence in Josephson qubits from dielectric loss. Phys Rev Lett 95(21):210503

    Google Scholar 

  216. Gao J, Daal M, Vayonakis A, Kumar S, Zmuidzinas J, Sadoulet B, Mazin BA, Day PK, Leduc HG (2008) Experimental evidence for a surface distribution of two-level systems in superconducting lithographed microwave resonators. Appl Phys Lett 92(15):152505

    Google Scholar 

  217. Weides MP, Kline JS, Vissers MR, Sandberg MO, Wisbey DS, Johnson BR, Ohki TA, Pappas DP (2011) Coherence in a transmon qubit with epitaxial tunnel junctions. Appl Phys Lett 99(26):262502. https://doi.org/10.1063/1.3672000. Accessed 18 Mar 2022

  218. Qiu W, Makise K, Terai H (2017) Dielectric loss in superconducting NbN (200) CPW resonator developed on Si substrate. IEEE Trans Appl Supercond. https://doi.org/10.1109/TASC.2017.2649840

    Article  Google Scholar 

  219. Barends R, Vercruyssen N, Endo A, De Visser P, Zijlstra T, Klapwijk T, Diener P, Yates S, Baselmans J (2010) Minimal resonator loss for circuit quantum electrodynamics. Appl Phys Lett 97(2):023508

    Google Scholar 

  220. Nersisyan A, Poletto S, Alidoust N, Manenti R, Renzas R, Bui C-V, Vu K, Whyland T, Mohan Y, Sete EA et al (2019) Manufacturing low dissipation superconducting quantum processors 31–1. IEEE

  221. Cho K-H, Patel U, Podkaminer J, Gao Y, Folkman C, Bark C, Lee S, Zhang Y, Pan X, McDermott R et al (2013) Epitaxial Al2O3 capacitors for low microwave loss superconducting quantum circuits. APL Mater 1(4):042115

    Google Scholar 

  222. Bruno A, de Lange G, Asaad S, van der Enden KL, Langford NK, DiCarlo L (2015) Reducing intrinsic loss in superconducting resonators by surface treatment and deep etching of silicon substrates. Appl Phys Lett 106(18):182601. https://doi.org/10.1063/1.4919761. Accessed 8 Mar 2022

  223. Gambetta JM, Murray CE, Fung Y-K-K, McClure DT, Dial O, Shanks W, Sleight JW, Steffen M (2017) Investigating surface loss effects in superconducting transmon qubits. IEEE Trans Appl Supercond. https://doi.org/10.1109/TASC.2016.2629670

    Article  Google Scholar 

  224. Quintana CM, Megrant A, Chen Z, Dunsworth A, Chiaro B, Barends R, Campbell B, Chen Y, Hoi I-C, Jeffrey E, Kelly J, Mutus JY, O’Malley PJJ, Neill C, Roushan P, Sank D, Vainsencher A, Wenner J, White TC, Cleland AN, Martinis JM (2014) Characterization and reduction of microfabrication-induced decoherence in superconducting quantum circuits. Appl Phys Lett 105(6):062601. https://doi.org/10.1063/1.4893297. Accessed 8 Mar 2022

  225. Dunsworth A, Megrant A, Quintana C, Chen Z, Barends R, Burkett B, Foxen B, Chen Y, Chiaro B, Fowler A, Graff R, Jeffrey E, Kelly J, Lucero E, Mutus JY, Neeley M, Neill C, Roushan P, Sank D, Vainsencher A, Wenner J, White TC, Martinis JM (2017) Characterization and reduction of capacitive loss induced by sub-micron Josephson junction fabrication in superconducting qubits. Appl Phys Lett 111(2):022601. https://doi.org/10.1063/1.4993577. Publisher: American Institute of Physics. Accessed 10 Mar 2022

  226. Calusine G, Melville A, Woods W, Das R, Stull C, Bolkhovsky V, Braje D, Hover D, Kim DK, Miloshi X, Rosenberg D, Sevi A, Yoder JL, Dauler E, Oliver WD (2018) Analysis and mitigation of interface losses in trenched superconducting coplanar waveguide resonators. Appl Phys Lett 112(6):062601. https://doi.org/10.1063/1.5006888. Accessed 8 Mar 2022

  227. Geerlings K, Shankar S, Edwards E, Frunzio L, Schoelkopf RJ, Devoret MH (2012) Improving the quality factor of microwave compact resonators by optimizing their geometrical parameters. Appl Phys Lett 100(19):192601. https://doi.org/10.1063/1.4710520. Accessed 8 Mar 2022

  228. Sage JM, Bolkhovsky V, Oliver WD, Turek B, Welander PB (2011) Study of loss in superconducting coplanar waveguide resonators. J Appl Phys 109(6):063915. https://doi.org/10.1063/1.3552890. Accessed 21 Mar 2022

  229. Yost DRW, Schwartz ME, Mallek J, Rosenberg D, Stull C, Yoder JL, Calusine G, Cook M, Das R, Day AL, Golden EB, Kim DK, Melville A, Niedzielski BM, Woods W, Kerman AJ, Oliver WD (2020) Solid-state qubits integrated with superconducting through-silicon vias. npj Quantum Inf 6(1):59. https://doi.org/10.1038/s41534-020-00289-8. Accessed 21 Mar 2022

  230. Torgovkin A, Chaudhuri S, Ruhtinas A, Lahtinen M, Sajavaara T, Maasilta IJ (2018) High quality superconducting titanium nitride thin film growth using infrared pulsed laser deposition. Supercond Sci Technol 31(5):055017. https://doi.org/10.1088/1361-6668/aab7d6. Accessed 21 Mar 2022

  231. Coumou PCJJ, Zuiddam MR, Driessen EFC, de Visser PJ, Baselmans JJA, Klapwijk TM (2013) Microwave properties of superconducting atomic-layer deposited TiN films. IEEE Trans Appl Supercond. 23(3):7500404–7500404. https://doi.org/10.1109/TASC.2012.2236603

    Article  CAS  Google Scholar 

  232. Shearrow A, Koolstra G, Whiteley SJ, Earnest N, Barry PS, Heremans FJ, Awschalom DD, Shirokoff E, Schuster DI (2018) Atomic layer deposition of titanium nitride for quantum circuits. Appl Phys Lett 113(21):212601. https://doi.org/10.1063/1.5053461. Accessed 21 Mar 2022

  233. Grabovskij GJ, Peichl T, Lisenfeld J, Weiss G, Ustinov AV (2012) Strain tuning of individual atomic tunneling systems detected by a superconducting qubit. Science 338(6104):232–234. https://doi.org/10.1126/science.1226487. Accessed 27 June 2022

  234. Sarabi B, Ramanayaka AN, Burin AL, Wellstood FC, Osborn KD (2016) Projected dipole moments of individual two-level defects extracted using circuit quantum electrodynamics. Phys Rev Lett 116(16):167002. https://doi.org/10.1103/PhysRevLett.116.167002. Accessed 27 June 2022

  235. Lisenfeld J, Bilmes A, Megrant A, Barends R, Kelly J, Klimov P, Weiss G, Martinis JM, Ustinov AV (2019) Electric field spectroscopy of material defects in transmon qubits. npj Quantum Inf5(1):1–6. https://doi.org/10.1038/s41534-019-0224-1. Accessed 24 June 2022

  236. Bilmes A, Volosheniuk S, Ustinov AV, Lisenfeld J (2022) Probing defect densities at the edges and inside Josephson junctions of superconducting qubits. npj Quantum Inf 8(1):1–6. https://doi.org/10.1038/s41534-022-00532-4. Accessed 9 Mar 2022

  237. Oh S, Cicak K, Kline JS, Sillanpää MA, Osborn KD, Whittaker JD, Simmonds RW, Pappas DP (2006) Elimination of two level fluctuators in superconducting quantum bits by an epitaxial tunnel barrier. Phys Rev B 74(10):100502. https://doi.org/10.1103/PhysRevB.74.100502. Accessed 8 Mar 2022

  238. Osman A, Simon J, Bengtsson A, Kosen S, Krantz P, Lozano DP, Scigliuzzo M, Delsing P, Bylander J, Fadavi Roudsari A (2021) Simplified Josephson-junction fabrication process for reproducibly high-performance superconducting qubits. Appl Phys Lett 118(6):064002. https://doi.org/10.1063/5.0037093. Accessed 28 June 2022

  239. Bilmes A, Händel AK, Volosheniuk S, Ustinov AV, Lisenfeld J (2021) In-situ bandaged Josephson junctions for superconducting quantum processors. Supercond Sci Technol 34(12):125011. https://doi.org/10.1088/1361-6668/ac2a6d. Accessed 28 June 2022

  240. Premkumar A, Weiland C, Hwang S, Jäck B, Place APM, Waluyo I, Hunt A, Bisogni V, Pelliciari J, Barbour A, Miller MS, Russo P, Camino F, Kisslinger K, Tong X, Hybertsen MS, Houck AA, Jarrige I (2021) Microscopic relaxation channels in materials for superconducting qubits. Commun Mater 2(1):72. https://doi.org/10.1038/s43246-021-00174-7. Accessed 8 Mar 2022

  241. Place APM, Rodgers LVH, Mundada P, Smitham BM, Fitzpatrick M, Leng Z, Premkumar A, Bryon J, Vrajitoarea A, Sussman S, Cheng G, Madhavan T, Babla HK, Le XH, Gang Y, Jäck B, Gyenis A, Yao N, Cava RJ, de Leon NP, Houck AA (2021) New material platform for superconducting transmon qubits with coherence times exceeding 0.3 milliseconds. Nat Commun 12(1):1779. https://doi.org/10.1038/s41467-021-22030-5. Accessed 8 Mar 2022

  242. Cava RJ, Batlogg B, Krajewski JJ, Poulsen HF, Gammel P, Peck WF, Rupp LW (1991) Electrical and magnetic properties of Nb 2 O 5 - crystallographic shear structures. Phys Rev B 44(13):6973–6981. https://doi.org/10.1103/PhysRevB.44.6973. Accessed 21 Mar 2022

  243. Face DW, Prober DE (1987) Nucleation of body-centered-cubic tantalum films with a thin niobium underlayer. J Vacuum Sci Technol A Vacuum Surf Films 5(6):3408–3411. https://doi.org/10.1116/1.574203. Accessed 21 Mar 2022

  244. Ristè D, Bultink CC, Tiggelman MJ, Schouten RN, Lehnert KW, DiCarlo L (2013) Millisecond charge-parity fluctuations and induced decoherence in a superconducting transmon qubit. Nat Commun 4(1):1913. https://doi.org/10.1038/ncomms2936. Accessed 13 June 2022

  245. Lenander M, Wang H, Bialczak RC, Lucero E, Mariantoni M, Neeley M, O’Connell AD, Sank D, Weides M, Wenner J, Yamamoto T, Yin Y, Zhao J, Cleland AN, Martinis JM (2011) Measurement of energy decay in superconducting qubits from nonequilibrium quasiparticles. Phys Rev B 84(2):024501. https://doi.org/10.1103/PhysRevB.84.024501

  246. Zmuidzinas J (2012) Superconducting Microresonators: Physics and Applications. Annual Review of Condensed Matter Physics 3(1):169–214. https://doi.org/10.1146/annurev-conmatphys-020911-125022. Accessed 24 Mar 2022

  247. Kaplan SB, Chi CC, Langenberg DN, Chang JJ, Jafarey S, Scalapino DJ (1976) Quasiparticle and phonon lifetimes in superconductors. Phys Rev B 14(11):4854–4873. https://doi.org/10.1103/PhysRevB.14.4854. Accessed 14 June 2022

  248. de Visser PJ, Goldie DJ, Diener P, Withington S, Baselmans JJA, Klapwijk TM (2014) Evidence of a Nonequilibrium Distribution of Quasiparticles in the Microwave Response of a Superconducting Aluminum Resonator. Phys Rev Lett 112(4):047004. https://doi.org/10.1103/PhysRevLett.112.047004. Accessed 14 June 2022

  249. Leduc HG, Bumble B, Day PK, Eom BH, Gao J, Golwala S, Mazin BA, McHugh S, Merrill A, Moore DC, Noroozian O, Turner AD, Zmuidzinas J (2010) Titanium nitride films for ultrasensitive microresonator detectors. Appl Phys Lett 97(10):102509. https://doi.org/10.1063/1.3480420. Accessed 14 June 2022

  250. Barends R, Wenner J, Lenander M, Chen Y, Bialczak RC, Kelly J, Lucero E, O’Malley P, Mariantoni M, Sank D, Wang H, White TC, Yin Y, Zhao J, Cleland AN, Martinis JM, Baselmans JJA (2011) Minimizing quasiparticle generation from stray infrared light in superconducting quantum circuits. Appl Phys Lett 99(11):113507. https://doi.org/10.1063/1.3638063. Accessed 14 June 2022

  251. Córcoles AD, Chow JM, Gambetta JM, Rigetti C, Rozen JR, Keefe GA, Beth Rothwell M, Ketchen MB, Steffen M (2011) Protecting superconducting qubits from radiation. Appl Phys Lett 99(18):181906. https://doi.org/10.1063/1.3658630. Accessed 14 June 2022

  252. Houzet M, Serniak K, Catelani G, Devoret MH, Glazman LI (2019) Photon-assisted charge-parity jumps in a superconducting qubit. Phys Rev Lett 123(10):107704. https://doi.org/10.1103/PhysRevLett.123.107704. Accessed 28 June 2022

  253. Kreikebaum JM, Dove A, Livingston W, Kim E, Siddiqi I (2016) Optimization of infrared and magnetic shielding of superconducting TiN and Al coplanar microwave resonators. Supercond Sci Technol 29(10):104002. https://doi.org/10.1088/0953-2048/29/10/104002. Accessed 14 June 2022

  254. Vepsäläinen AP, Karamlou AH, Orrell JL, Dogra AS, Loer B, Vasconcelos F, Kim DK, Melville AJ, Niedzielski BM, Yoder JL, Gustavsson S, Formaggio JA, VanDevender BA, Oliver WD (2020) Impact of ionizing radiation on superconducting qubit coherence. Nature 584(7822):551–556. https://doi.org/10.1038/s41586-020-2619-8. Accessed 14 June 2022

  255. Cardani L, Valenti F, Casali N, Catelani G, Charpentier T, Clemenza M, Colantoni I, Cruciani A, D’Imperio G, Gironi L, Grünhaupt L, Gusenkova D, Henriques F, Lagoin M, Martinez M, Pettinari G, Rusconi C, Sander O, Tomei C, Ustinov AV, Weber M, Wernsdorfer W, Vignati M, Pirro S, Pop IM (2021) Reducing the impact of radioactivity on quantum circuits in a deep-underground facility. Nat Commun 12(1):2733. https://doi.org/10.1038/s41467-021-23032-z. Accessed 8 Mar 2022

  256. Martinis JM (2021) Optimal design of a superconducting transmon qubit with tapered wiring. arXiv:2104.01544. Accessed 28 June 2022

  257. Kurter C, Murray CE, Gordon RT, Wymore BB, Sandberg M, Shelby RM, Eddins A, Adiga VP, Finck ADK, Rivera E, Stabile AA, Trimm B, Wacaser B, Balakrishnan K, Pyzyna A, Sleight J, Steffen M, Rodbell K (2022) Quasiparticle tunneling as a probe of Josephson junction barrier and capacitor material in superconducting qubits. npj Quantum Inf 8(1):1–8. Accessed 22 Mar 2022

  258. Nsanzineza I, Plourde BLT (2014) Trapping a single vortex and reducing quasiparticles in a superconducting resonator. Phys Rev Lett 113(11):117002. https://doi.org/10.1103/PhysRevLett.113.117002. Accessed 13 June 2022

  259. Chiaro B, Megrant A, Dunsworth A, Chen Z, Barends R, Campbell B, Chen Y, Fowler A, Hoi IC, Jeffrey E, Kelly J, Mutus J, Neill C, O’Malley PJJ, Quintana C, Roushan P, Sank D, Vainsencher A, Wenner J, White TC, Martinis JM (2016) Dielectric surface loss in superconducting resonators with flux-trapping holes. Supercond Sci Technol 29(10):104006. https://doi.org/10.1088/0953-2048/29/10/104006. Accessed 13 June 2022

  260. Song C, Heitmann TW, DeFeo MP, Yu K, McDermott R, Neeley M, Martinis JM, Plourde BLT (2009) Microwave response of vortices in superconducting thin films of Re and Al. Phys Rev B 79(17):174512. https://doi.org/10.1103/PhysRevB.79.174512. Accessed 28 Mar 2022

  261. Sandberg M, Vissers MR, Ohki TA, Gao J, Aumentado J, Weides M, Pappas DP (2013) Radiation-suppressed superconducting quantum bit in a planar geometry. Appl Phys Lett 102(7):072601. https://doi.org/10.1063/1.4792698. Accessed 13 June 2022

  262. Goetz J, Deppe F, Haeberlein M, Wulschner F, Zollitsch CW, Meier S, Fischer M, Eder P, Xie E, Fedorov KG, Menzel EP, Marx A, Gross R (2016) Loss mechanisms in superconducting thin film microwave resonators. J Appl Phys 119(1):015304. https://doi.org/10.1063/1.4939299. Accessed 13 June 2022

  263. McRae CRH, Wang H, Gao J, Vissers MR, Brecht T, Dunsworth A, Pappas DP, Mutus J (2020) Materials loss measurements using superconducting microwave resonators. Rev Sci Instrum 91(9):091101. https://doi.org/10.1063/5.0017378. Accessed 13 June 2022

  264. Sheldon S, Sandberg M, Paik H, Abdo B, Chow JM, Steffen M, Gambetta JM (2017) Characterization of hidden modes in networks of superconducting qubits. Appl Phys Lett 111(22):222601. https://doi.org/10.1063/1.4990033. Accessed 14 June 2022

  265. Houck AA, Schreier JA, Johnson BR, Chow JM, Koch J, Gambetta JM, Schuster DI, Frunzio L, Devoret MH, Girvin SM, Schoelkopf RJ (2008) Controlling the spontaneous emission of a superconducting transmon qubit. Phys Rev Lett 101(8):080502. https://doi.org/10.1103/PhysRevLett.101.080502. Accessed 14 June 2022

  266. Rafferty O, Patel S, Liu CH, Abdullah S, Wilen CD, Harrison DC, McDermott R (2021) Spurious antenna modes of the transmon qubit. arXiv:2103.06803. Accessed 14 June 2022

  267. Wenner J, Neeley M, Bialczak RC, Lenander M, Lucero E, O’Connell AD, Sank D, Wang H, Weides M, Cleland AN, Martinis JM (2011) Wirebond crosstalk and cavity modes in large chip mounts for superconducting qubits. Supercond Sci Technol 24(6):065001. https://doi.org/10.1088/0953-2048/24/6/065001. Accessed 14 June 2022

  268. Chen Z, Megrant A, Kelly J, Barends R, Bochmann J, Chen Y, Chiaro B, Dunsworth A, Jeffrey E, Mutus JY, O’Malley PJJ, Neill C, Roushan P, Sank D, Vainsencher A, Wenner J, White TC, Cleland AN, Martinis JM (2014) Fabrication and characterization of aluminum airbridges for superconducting microwave circuits. Appl Phys Lett 104(5):052602. https://doi.org/10.1063/1.4863745. Accessed 14 June 2022

  269. Lei CU, Krayzman L, Ganjam S, Frunzio L, Schoelkopf RJ (2020) High coherence superconducting microwave cavities with indium bump bonding. Appl Phys Lett 116(15):154002. https://doi.org/10.1063/5.0003907. Accessed 14 June 2022

  270. Brecht T, Reagor M, Chu Y, Pfaff W, Wang C, Frunzio L, Devoret MH, Schoelkopf RJ (2015) Demonstration of superconducting micromachined cavities. Appl Phys Lett 107(19):192603

    Google Scholar 

  271. Berke C, Varvelis E, Trebst S, Altland A, DiVincenzo DP (2022) Transmon platform for quantum computing challenged by chaotic fluctuations. Nat Commun 13(1):1–10

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Vibhor Singh or Baladitya Suri.

Ethics declarations

Conflict of interest

On behalf of all authors, the corresponding author states that there are no conflicts of interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mamgain, A., Khaire, S.S., Singhal, U. et al. A Review of Developments in Superconducting Quantum Processors. J Indian Inst Sci 103, 633–669 (2023). https://doi.org/10.1007/s41745-022-00330-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s41745-022-00330-z

Keywords

Navigation