Skip to main content

Advertisement

Log in

Real-time state synchronization between physical construction robots and process-level digital twins

  • Original Paper
  • Published:
Construction Robotics Aims and scope Submit manuscript

Abstract

This research focuses on developing a robot digital twin (DT) and the communication methods to connect it with the corresponding physical robot in collaborative human–robot construction work. Robots are being increasingly deployed on construction sites to assist human workers with physically demanding work tasks. Robot simulations in a process-level DT can be used to extend design models, such as building information modeling, to the construction phase for real-time monitoring of robot motion planning and control. Robots can be enabled to plan work tasks and execute them in the DT simulations. Once simulated tasks and trajectories are approved by human workers, commands can be sent to the physical robots to perform the tasks. However, a system to bridge a virtual DT and a physical robot and allow for such communication to occur is a capability that has not been readily available thus far, primarily due to the complexity involved in physical robot operations. This paper discusses the development of a system to bridge robot simulations and physical robots in construction and digital fabrication. The Gazebo robot simulator is used for DT, and the robot operating system is leveraged as the primary framework for bi-directional communication with the physical robots. The virtual robots in Gazebo receive planned trajectories from motion planners and then send the commands to the physical robots for execution. Two different robot control modes, i.e., joint angle control mode and Cartesian path control mode, are developed to accommodate various construction strategies. The system is implemented in a digital fabrication case study with a full-scale KUKA KR120 six-degrees-of-freedom robotic arm mounted on a track system. We evaluated the system by comparing the data transmission time, joint angles, and end-effector pose between the virtual and physical robot using several planned trajectories and calculated the average and maximum mean square errors. The results showed that the proposed real-time process-level robot DT system can plan the robot trajectory inside the virtual environment and execute it in the physical environment with high accuracy and real-time performance, offering the opportunity for further development and deployment of the collaborative human–robot work paradigm on real construction sites.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

Download references

Funding

The work presented in this paper was supported financially by United States National Science Foundation Awards (#2025805 and #2128623). Any opinions, findings, and conclusions, or recommendations expressed in this paper are those of the authors and do not necessarily reflect the views of the United States National Science Foundation.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ci-Jyun Liang.

Ethics declarations

Conflict of interest

On behalf of all authors, the corresponding author states that there is no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liang, CJ., McGee, W., Menassa, C.C. et al. Real-time state synchronization between physical construction robots and process-level digital twins. Constr Robot 6, 57–73 (2022). https://doi.org/10.1007/s41693-022-00068-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s41693-022-00068-1

Keywords

Navigation