Skip to main content
Log in

Study on temperature response of the HERD calorimeter cell

  • Original Paper
  • Published:
Radiation Detection Technology and Methods Aims and scope Submit manuscript

Abstract

Purpose

To derive the temperature response of the basic unit of the electromagnetic calorimeter of the high energy cosmic-radiation detection (HERD) facility.

Method

Tested a method to measure HERD calorimeter cell (HCC) light yield using an ultraviolet Light-Emitting Diode with a wavelength of 300 nm, and established an experimental setup and tested the light yield of the HCC at different temperatures in a thermal chamber.

Results and conclusions

The result showed that the signal amplitudes variation of the HCC reached up to 10.2% with temperature ranging from 0 to 60 °C, if we narrow the temperature range to 0– 35 °C, the variation was about 3.7% and it showed much better linearity. This result provides a good instruction on the thermal control of the HERD calorimeter (CALO) to improve its performance.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. C. Altomare et al., Particle identification capability of Plastic scintillator tiles equipped with SiPMs for the High Energy cosmic-Radiation Detection (HERD) facility. Nucl Instrum Methods Phys Res Sect A: Accel Spectrom Detect Assoc Equip 983, 164476 (2020). https://doi.org/10.1016/j.nima.2020.164476

    Article  Google Scholar 

  2. P.W. Cattaneo, The space station based detector HERD: precise high energy cosmic rays physics and multimessenger astronomy. Nucl Particle Phys Proc 306–308, 85–91 (2019). https://doi.org/10.1016/j.nuclphysbps.2019.07.013

    Article  ADS  Google Scholar 

  3. C. Wanarak et al., Luminescence and scintillation properties of Ce-doped LYSO and YSO crystals. Adv Mater Res 199–200, 1796–1803 (2011). https://doi.org/10.4028/www.scientific.net/AMR.199-200.1796

    Article  Google Scholar 

  4. T. Yagi et al., A small high sensitivity neutron detector using a wavelength shifting fiber. Appl Radiat Isot 69(1), 176–179 (2011). https://doi.org/10.1016/j.apradiso.2010.07.016

    Article  Google Scholar 

  5. L. Cheng et al., Temperature induced spectral lines broadening and fluorescence quenching in Tm:YAG crystals. Acta Opt Sinica (1999). https://doi.org/10.3321/j.issn:0253-2239.1999.02.019

    Article  Google Scholar 

  6. Zhang T et al. (2016) Several main influencing factors of the LYSO:Ce Afterglow. J Synth Cryst https://doi.org/10.16553/j.cnki.issn1000-985x.2016.07.013.

  7. Z. Zong et al., Study of light yield for different configurations of plastic scintillators and wavelength shifting fibers. Nucl Instrum Methods Phys Res 908, 82–90 (2018). https://doi.org/10.1016/j.nima.2018.08.029

    Article  ADS  Google Scholar 

  8. Kim CL (2005) A study on the temperature characteristics of LYSO PET detector. In: Nuclear science symposium conference record, IEEE vol.4. 2005, 4-.https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=1596728&tag=1

  9. G.V. Ioannis et al., Evaluation of the light emission efficiency of LYSO: Ce scintillator under X-ray excitation for possible applications in medical imaging. Nucl Instrum Methods Phys Res (2006). https://doi.org/10.1016/j.nima.2006.08.018

    Article  Google Scholar 

  10. K. Wei et al., Photoluminescence nonlinearity and picosecond transient absorption in an LYSO: Ce scintillator excited by a 266 nm ultraviolet laser. RSC Adv 11(28), 17020–17024 (2021). https://doi.org/10.1039/D1RA00347J

    Article  ADS  Google Scholar 

  11. J.D. Naud, T.A. Tombrello, The role of cerium sites in the scintillation mechanism of LSO. IEEE Trans Nucl Sci 43(3), 1324–1328 (1996)

    Article  ADS  Google Scholar 

  12. C.M. Pepin et al., Properties of LYSO and recent LSO scintillators for phoswich PET detectors. IEEE Trans Nucl Sci 51(3), 789–795 (2004). https://doi.org/10.1109/TNS.2004.829781

    Article  ADS  Google Scholar 

  13. Suzuki H, Tombrello TA, Melcher CL et al (1992) Light emission mechanism of Lu2(SiO4)O:Ce. Nuclear science symposium and medical imaging conference, 1992. Conference Record of the 1992 IEEE. IEEE. http://authors.library.caltech.edu/50503/1/00256584.pdf

  14. H. Suzuki, T.A. Tombrello, C.L. Melcher et al., UV and gamma-ray excited luminescence of cerium-doped rare-earth oxyorthosilicates. Nucl Instrum Methods Phys Res Sect A: Accel Spectrom Detect Assoc Equip 320(1–2), 263–272 (1992). https://doi.org/10.1016/0168-9002(92)90784-2

    Article  ADS  Google Scholar 

  15. Z. Ji et al., Investigation of optical transmittance and light response uniformity of 600-mm-long BGO crystals. Nucl Inst Methods Phys Res A 753, 143–148 (2014). https://doi.org/10.1016/j.nima.2014.03.056

    Article  ADS  Google Scholar 

Download references

Acknowledgements

Thank the support from the National Natural Science Foundation of China (Grant Nos. 12027803, 11875097, 11975257) and the support from the International Partnership Program of Chinese Academy of Sciences (Grant No. 113111KYSB20190020).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Xingzhu Cui or Zhipeng Wei.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dai, Y., Cui, X., Liu, X. et al. Study on temperature response of the HERD calorimeter cell. Radiat Detect Technol Methods 7, 227–233 (2023). https://doi.org/10.1007/s41605-022-00377-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s41605-022-00377-7

Keywords

Navigation