Skip to main content
Log in

The offline data quality monitoring of the BESIII end cap TOF system

  • Original Paper
  • Published:
Radiation Detection Technology and Methods Aims and scope Submit manuscript

A Correction to this article was published on 23 December 2021

This article has been updated

Abstract

Purpose

The end cap time of flight (TOF) at Beijing spectrometer was upgraded with multi-gap resistive plate chamber technology in order to improve the particle identification capability in 2015. The offline data quality monitoring is a critical aspect of the data processing chain aiming at providing data with good quality for physics analyses.

Methods

An offline data quality monitoring tool for upgraded end cap TOF has been developed to provide feedback about the functioning and performance of detector hardware and data processing chain.

Results

Detector information and reconstructed time-of- flight characteristics of charged tracks are filled into plots using full Bhabha events reconstruction results, and then, these plots are used to assess the operational conditions of the detector and the quality of the data by the experts.

Conclusion

This paper is describing the design and the content of performance of the offline data quality monitoring of end cap TOF and the data quality performance achieved during last 2 years’ physical data taking.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Change history

References

  1. M. Ablikim et al., (BESIII Collaboration). Nucl. Instrum. Meth. A 614, 345–399 (2010)

  2. M. Ablikim et al., (BESIII Collaboration). Nucl. Instrum. Meth. A 598, 7–11 (2009)

  3. C. Zhang for BEPC&BEEPCII Teams, in Proceedings of APAC, pp. 15–19, Gyeongju, Korea (2004)

  4. Qin Gang et al., Chin. Phys. C 32, 1–8 (2018)

    Article  Google Scholar 

  5. Y.K. Heng et al., IEEE Nucl. Sci. Symp. Conf. Rec., pp. 53–57 (2007)

  6. C. Wu et al., Nucl. Instrum. Meth. A 555, 142–147 (2005)

    Article  ADS  Google Scholar 

  7. Sun Zhi-Jia et al., High Energy Phys. Nucl. Phys. 29(10), 933–937 (2005). (in Chinese)

    Google Scholar 

  8. S.H. An et al., Meas. Sci. Technol. 17, 2650–2654 (2006)

    Article  ADS  Google Scholar 

  9. E.C. Zeballos et al., Nucl. Instrum. Meth. A 374, 132–136 (1996)

    Article  ADS  Google Scholar 

  10. M.C.S. Williams et al., (ALICE Collaboration). Nucl. Phys. A 698, 464–467 (2001)

  11. P. Fonte et al., Nucl. Instrum. Meth. A 449, 295–301 (2000)

    Article  ADS  Google Scholar 

  12. A. Akindinov et al., Nucl. Instrum. Meth. A 602, 821–824 (2009)

    Article  ADS  Google Scholar 

  13. Sun Yong-Jie et al., Chin. Phys. C (HEP&NP) 36, 429–433 (2012)

    Article  ADS  Google Scholar 

  14. S. Yang et al., Nucl. Instrum. Meth. A 76, 190–196 (2014)

    Article  ADS  Google Scholar 

  15. H. Fan et al., IEEE Trans. Nucl. Sci. 60, 3563 (2013)

    Article  ADS  Google Scholar 

  16. Xin Li et al., Radiat. Detect. Technol. Methods 1, 13 (2017)

    Article  Google Scholar 

  17. D. De Gruttola et al., Nucl. Instrum. Meth. A 661, S102–S105 (2012)

    Article  Google Scholar 

  18. A. Alici et al., Nucl. Instrum. Meth. A 706, 29–32 (2013)

    Article  ADS  Google Scholar 

  19. F. Geurts et al., Nucl. Instrum. Meth. A 533, 60–64 (2004)

    Article  ADS  Google Scholar 

  20. W.J. Llope, Nucl. Instrum. Meth. A 241, 306–310 (2005)

    Article  ADS  Google Scholar 

  21. Ying-Xiao Guo et al., Radiat. Detect. Technol. Methods 1, 15 (2017)

    Article  Google Scholar 

  22. R.X. Yang et al., JINST 12, C01012 (2017)

    Article  Google Scholar 

  23. Xihui Chen et al., Nucl. Instrum. Meth. A 592, 428–433 (2008)

    Article  ADS  Google Scholar 

  24. Xie Xiao-Xi et al., Nucl. Electron. Detect. Technol. 26, 291–295 (2006). (in Chinese)

    Google Scholar 

  25. Zhang Yin-Hong et al., Nucl. Electron. Detect. Technol. 28, 744–748 (2008). (in Chinese)

    Google Scholar 

  26. Li Fei et al., Nucl. Electron. Detect. Technol. 27, 462–465 (2007). (in Chinese)

    Google Scholar 

  27. Hu Ji-Feng et al., Chin. Phys. C (HEP&NP) 36, 62–66 (2012)

    Article  ADS  Google Scholar 

  28. Sun Xiao-Dong et al., Chin. Phys. C (HEP&NP) 36, 622–627 (2012)

    Article  ADS  Google Scholar 

  29. X.Z. Wang et al., Chin. Phys. C 41, 016103 (2017)

    Article  ADS  Google Scholar 

  30. Z. Wu et al., JINST 11, C07005 (2016)

    Article  ADS  Google Scholar 

  31. X.Z. Wang et al., Eur. Phys. J. C 76, 211 (2016)

    Article  ADS  Google Scholar 

  32. X. Ma et al., High Energy Phys. Nucl. Phys. 32, 744–749 (2008)

    Google Scholar 

  33. S. Agostinelli et al., (GEANT4 Collaboration). Nucl. Instrum. Meth. A 506, 250–303 (2003)

  34. L.L. Wang et al., High Energy Phys. Nucl. Phys. 31, 183–188 (2007). (in Chinese)

    Google Scholar 

  35. J.K. Wang et al., Chin. Phys. C (HEP&NP) 33, 870–879 (2009)

    Article  ADS  Google Scholar 

  36. J. Yan et al., Chin. Phys. C (HEP&NP) 34, 368–373 (2010)

    Article  ADS  Google Scholar 

  37. C.D. Fu et al., Chin. Phys. C (HEP&NP) 32, 329–337 (2008)

    Article  ADS  Google Scholar 

  38. W.D. Li, et al., Int. Conf. Comput. High Energy Nucl. Phys. 1, 225–228 (2006)

  39. G. Barrand, et al., Comput. Phys. Commun. 140 45 (2001); http://proj-gaudi.web.cern.ch/proj-gaudi

Download references

Acknowledgements

The authors would like to thank the tremendous efforts of the BESIII ETOF group. This work is supported in part by the CAS center for Excellence in Particle Physics (CCEPP).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jing-Yi Liu.

Additional information

Supported in part by National Natural Science Foundation of China (11575225, 11875277, U1232201, 11605220, U1832204), National Key Basic Research Program of China (2015CB856700), Chinese Academy of Sciences (1G201331231172010).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ma, MM., Liu, JY., Wen, SP. et al. The offline data quality monitoring of the BESIII end cap TOF system. Radiat Detect Technol Methods 3, 58 (2019). https://doi.org/10.1007/s41605-019-0132-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s41605-019-0132-0

Keywords

Navigation