Skip to main content

Advertisement

Log in

Investigation of photon energy absorption properties for some biomolecules

  • Published:
Nuclear Science and Techniques Aims and scope Submit manuscript

Abstract

The mass energy absorption coefficient (\(\mu _{\mathrm{en}}/\rho\)), effective atomic number (\(Z_{\mathrm{PEA}_{\mathrm{eff}}}\)), and electron density (\(N_{\mathrm{PEA}_{\mathrm{eff}}}\)) of some biomolecules with potential application in radiation dosimetry were calculated for their photon energy absorption (PEA) in the energy region of 1–20 MeV. It was noticed that the values of \(\mu _{\mathrm{en}}/\rho\), \(Z_{\mathrm{PEA}_{\mathrm{eff}}}\), and \(N_{\mathrm{PEA}_{\mathrm{eff}}}\) vary with the energy and composition of the biomolecules. The results for \(Z_{\mathrm{PEA}_{\mathrm{eff}}}\) were compared with effective atomic numbers (\(Z_{\mathrm{PI}_{\mathrm{eff}}}\)) owing to the photon interaction (PI). Significant differences were noted between \(Z_{\mathrm{PEA}_{\mathrm{eff}}}\) and \(Z_{\mathrm{PI}_{\mathrm{eff}}}\) in the energy region of 10–150 keV for all of the biomolecules involved. A maximum difference of 45.36% was observed at 50 keV for creatinine hydrochloride. Moreover, the studied attenuation parameters were found to be sharply affected at the K-absorption edge of relatively high-Z elements present in the biomolecules.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. G.J. Hine, The effective atomic numbers of materials for various gamma ray interactions. Phys. Rev. 85, 725–737 (1952)

    Google Scholar 

  2. J.H. Hubbell, Photon mass attenuation and energy-absorption coefficients. Int. J. Appl. Radiat. Isot. 33(11), 1269–1290 (1982). https://doi.org/10.1016/0020-708X(82)90248-4

    Article  Google Scholar 

  3. J.S. Revathy, J. Anooja, R.B. Krishnaveni et al., Effective atomic numbers in some food materials and medicines for \(\gamma\)-ray attenuation using \(^{137}\text{ Cs } \gamma\)-ray. Pramana-J. Phys. 90, 72 (2018). https://doi.org/10.1007/s12043-018-1570-9

    Article  Google Scholar 

  4. R.S. Niranjan, B. Rudraswamy, N. Dhananjaya, Effective atomic number, electron density and kerma of gamma radiation for oxides of lanthanides. Pramana-J. Phys. 78, 451–458 (2012). https://doi.org/10.1007/s12043-011-0247-4

    Article  Google Scholar 

  5. O. Eyecioglu, A.M. El-Khayatt, Y. Karabul et al., A study on compatibility of experimental effective atomic numbers with those predicted by ZXCOM. Nucl. Sci. Tech. 28, 63 (2017). https://doi.org/10.1007/s41365-017-0220-0

    Article  Google Scholar 

  6. S.R. Manohara, S.M. Hanagodimath, K.S. Thind et al., The effective atomic number revisited in the light of modern photon-interaction cross-section databases. Appl. Radiat. Isot. 68(4–5), 784–787 (2010). https://doi.org/10.1016/j.apradiso.2009.09.047

    Article  Google Scholar 

  7. G.J. Hine, G.L. Brownell, Radiation Dosimetry (Academic Prss Inc, New York, 1956). https://doi.org/10.1016/B978-1-4832-3257-7.50001-9

    Book  Google Scholar 

  8. B.M. Ladhaf, P.P. Pawar, Studies on mass energy-absorption coefficients and effective atomic energy-absorption cross sections for carbohydrates. Radiat. Phys. Chem. 109, 89–94 (2015). https://doi.org/10.1016/j.radphyschem.2014.12.015

    Article  Google Scholar 

  9. J.H. Hubbell, S.M. Seltzer, Tables of X-Ray mass attenuation coefficients and mass energy-absorption coefficients 1 keV to 20 MeV for Elements \(\text{ Z }=1\) to 92 and 48 Additional substances of Dosimetric Interest. NIST Standard Reference Database 126, (1995). https://doi.org/10.18434/T4D01F

  10. C.T. Chantler, Theoretical form factor, attenuation, and scattering tabulation for \(\text{ Z }=1\)–92 from \(\text{ E }=1\)–10 eV to \(\text{ E }=0.4\)–1.0 MeV. J. Phys. Chem. Ref. Data 24(1), 71–643 (1995). https://doi.org/10.1063/1.555974

    Article  Google Scholar 

  11. M.J. Berger, J.H. Hubbell, S.M. Seltzer et al., XCOM: photon cross sections database. NIST Standard Reference Database 8, (1998). https://doi.org/10.18434/T48G6X

  12. L. Gerward, N. Guilbert, K.B. Jensen et al., WinXCom—a program for calculating X-ray attenuation coefficients. Radiat. Phys. Chem. 71, 653–654 (2004). https://doi.org/10.1016/j.radphyschem.2004.04.040

    Article  Google Scholar 

  13. C.T. Chantler et al., X-ray form factor, attenuation and scattering tables, NIST Standard Reference. Database 66, (2005). https://doi.org/10.18434/T4HS32

  14. S. Gowda, S. Krishnaveni, R. Gowda, Studies on effective atomic numbers and electron densities in amino acids and sugars in the energy range 30–1333 keV. Nucl. Instr. Meth. Phys. Res. B. 239, 361–369 (2005). https://doi.org/10.1016/j.nimb.2005.05.048

    Article  Google Scholar 

  15. D.F. Jackson, H.J. David, X-ray attenuation coefficients of elements and mixtures. Phys. Rep. 70, 169–233 (1981). https://doi.org/10.1016/0370-1573(81)90014-4

    Article  Google Scholar 

  16. G.K. Sandhu, K. Singh, B.S. Lark et al., Molar extinction coefficients of some fatty acids. Radiat. Phys. Chem. 65, 211–2015 (2002). https://doi.org/10.1016/S0969-806X(02)00269-4

    Article  Google Scholar 

  17. A. Kumar, Studies on effective atomic numbers and electron densities of nucleobases in DNA. Radiat. Phys. Chem. 127, 48–55 (2016). https://doi.org/10.1016/j.radphyschem.2016.06.006

    Article  Google Scholar 

  18. V.V. Awasarmol, D.K. Gaikwad, S.D. Raut et al., Photon interaction study of organic nonlinear optical materials in the energy range 122–1330 keV. Radiat. Phys. Chem. 130, 343–350 (2017). https://doi.org/10.1016/j.radphyschem.2016.09.012

    Article  Google Scholar 

  19. Y. Elmahroug, B. Tellili, C. Souga et al., Determination of total mass attenuation coefficients, effective atomic numbers and electron densities for different shielding materials. Ann. Nucl. Energy 75, 268–274 (2015). https://doi.org/10.1016/j.anucene.2014.08.015

    Article  Google Scholar 

  20. B.O. Elbashir, M.G. Dong, M.I. Sayyed et al., Comparison of Monte Carlo simulation of gamma ray attenuation coefficients of amino acids with XCOM program and experimental data. Results Phys. 9, 6–11 (2018). https://doi.org/10.1016/j.rinp.2018.01.075

    Article  Google Scholar 

  21. B. Akça, S.Z. Erzeneoğlu, The mass attenuation coefficients, electronic, atomic, and molecular cross sections, effective atomic numbers, and electron densities for compounds of some biomedically important elements at 59.5 keV. Sci. Technol. Nucl. Ins. (2014). https://doi.org/10.1155/2014/901465

    Article  Google Scholar 

  22. B.S. Sidhu, A.S. Dhaliwal, K.S. Mann et al., Study of mass attenuation coefficients, effective atomic numbers and electron densities for some low Z compounds of dosimetry interest at 59.54 keV incident photon energy. Ann. Nucl. Energy 42, 153–157 (2012). https://doi.org/10.1016/j.anucene.2011.12.015

    Article  Google Scholar 

  23. N.A.B. Amin, J. Zukhi, N.A. Kabir et al., Determination of effective atomic numbers from mass attenuation coefficients of tissue-equivalent materials in the energy range 60 keV–1.33 MeV. J. Phys. Conf. Ser. 851, 012018 (2017). https://doi.org/10.1088/1742-6596/851/1/012018

    Article  Google Scholar 

  24. H.C. Manjunatha, B. Rudraswamy, Study of effective atomic number and electron density for tissues from human organs in the energy range of 1 keV–100 GeV. Health Phys. 104(2), 158–162 (2013). https://doi.org/10.1097/HP.0b013e31827132e3

    Article  Google Scholar 

  25. V.P. Singh, N.M. Badiger, N. Kucuk, Assessment of methods for estimation of effective atomic numbers of common human organ and tissue substitutes: waxes, plastics and polymers. Radioprotection 49(2), 115–121 (2014). https://doi.org/10.1051/radiopro/2013090

    Article  Google Scholar 

  26. M. Kurudirek, T. Onaran, Calculation of effective atomic number and electron density of essential biomolecules for electron, proton, alpha particle and multi-energetic photon interactions. Radiat. Phys. Chem. 112, 125–138 (2015). https://doi.org/10.1016/j.radphyschem.2015.03.034

    Article  Google Scholar 

  27. D. Salehi, D. Sardari, M.S. Jozani, Investigation of some radiation shielding parameters in soft tissue. J. Radiat. Res. Appl. Sci. 8(3), 439–445 (2015). https://doi.org/10.1016/j.jrras.2015.03.004

    Article  Google Scholar 

  28. S.R. Manohara, S.M. Hanagodimath, L. Gerward, Studies on effective atomic number, electron density and kerma for some fatty acids and carbohydrates. Phys. Med. Biol. 53(20), N377–86 (2008). https://doi.org/10.1088/0031-9155/53/20/N01

    Article  Google Scholar 

  29. H. Arslan, Photon attenuation parameters for some tissues from Geant4 simulation, theoretical calculations and experimental data: a comparative study. Nucl. Sci. Tech. 30, 96 (2019). https://doi.org/10.1007/s41365-019-0617-z

    Article  Google Scholar 

  30. J.H. Hubbell, Photon Mass Attenuation and Mass Energy-Absorption Coefficients for H, C, N, O, Ar, and Seven Mixtures from 0.1 keV to 20 MeV. Radiat. Res. 70, 58–81 (1977). https://doi.org/10.2307/3574732

    Article  Google Scholar 

  31. S.R. Manohara, S.M. Hanagodimath, Effective atomic numbers for photon energy absorption of essential amino acids in the energy range 1 keV to 20 MeV. Nucl. Instr. Meth. Phys. Res. B 264, 9–14 (2007). https://doi.org/10.1016/j.nimb.2007.08.018

    Article  Google Scholar 

  32. A. Shantappa, S.G. Gounhalli, S.M. Hanagodimath, Energy dependence of effective atomic numbers for photon energy absorption of vitamins. IOSR J. Appl. Phys. 2, 49–56 (2012)

    Article  Google Scholar 

  33. V.P. Singh, M.E. Medhat, N.M. Badiger, Photon energy absorption coefficients for nuclear track detectors using Geant4 Monte Carlo simulation. Radiat. Phys. Chem. 106, 83–87 (2015). https://doi.org/10.1016/j.radphyschem.2014.07.001

    Article  Google Scholar 

  34. M. Singh, A. Tondon, B.S. Sandhu et al., Energy dependence of radiation interaction parameters of some organic compounds. Radiat. Phys. Chem. 145, 80–88 (2018). https://doi.org/10.1016/j.radphyschem.2017.12.020

    Article  Google Scholar 

  35. P.P. Pawar, G.K. Bichile, Studies on mass attenuation coefficient, effective atomic number and electron density of some amino acids in the energy range 0.122–1.330 MeV. Radiat. Phys. Chem. 92, 22–27 (2013). https://doi.org/10.1016/j.radphyschem.2013.07.004

    Article  Google Scholar 

  36. P.S. Kore, P.P. Pawar, Measurements of mass attenuation coefficient, effective atomic number and electron density of some amino acids. Radiat. Phys. Chem. 98, 86–91 (2014). https://doi.org/10.1016/j.radphyschem.2013.12.038

    Article  Google Scholar 

  37. D.K. Gaikwad, P.P. Pawar, T.P. Selvam, Mass attenuation coefficients and effective atomic numbers of biological compounds for gamma ray interactions. Radiat. Phys. Chem. 138, 75–80 (2017). https://doi.org/10.1016/j.radphyschem.2017.03.040

    Article  Google Scholar 

  38. B.T. Tonguc, H. Arslan, M.S. Al-Buriahi, Studies on mass attenuation coefficients, effective atomic numbers and electron densities for some biomolecules. Radiat. Phys. Chem. 153, 86–91 (2018). https://doi.org/10.1016/j.radphyschem.2018.08.025

    Article  Google Scholar 

  39. M. Kurudirek, Y. Ozdemir, A comprehensive study on energy absorption and exposure buildup factors for some essential amino acids, fatty acids and carbohydrates in the energy range 0.015–15 MeV up to 40 mean free path. Nucl. Instr. Methods Phys. Res. B. 269, 7–19 (2011). https://doi.org/10.1016/j.nimb.2010.10.015

    Article  Google Scholar 

  40. S.R. Manohara, S.M. Hanagodimath, L. Gerward, The effective atomic numbers of some biomolecules calculated by two methods: a comparative study. Med. Phys. 36, 137–141 (2009). https://doi.org/10.1118/1.3030952

    Article  Google Scholar 

  41. M. Kurudirek, T. Sinan, Investigation of human teeth with respect to the photon interaction, energy absorption and buildup factor. Nucl. Instr. Methods Phys. Res. B. 269, 1071–1081 (2011). https://doi.org/10.1016/j.nimb.2011.03.004

    Article  Google Scholar 

  42. S.R. Manohara, S.M. Hanagodimath, Studies on effective atomic numbers and electron densities of essential amino acids in the energy range 1 keV–100 GeV. Nucl. Instr. Methods Phys. Res. B. 258, 321–328 (2007). https://doi.org/10.1016/j.nimb.2007.02.101

    Article  Google Scholar 

  43. J.H. Hubbell, Review of photon interaction cross section data in the medical and biological context. Phys. Med. Biol. 44(1), R1–22 (1999). https://doi.org/10.1088/0031-9155/44/1/001

    Article  Google Scholar 

  44. C.T. Chantler, Detailed tabulation of atomic form factors, photoelectric absorption and scattering cross section, and mass attenuation coefficients in the vicinity of absorption edges in the soft X-ray (\(Z=30\)–36, \(Z=60\)–89, \(E=0.1\ \text{ keV }\)–10 keV), addressing convergence issues of earlier work. J. Phys. Chem. Ref. Data 29, 597–1048 (2000). https://doi.org/10.1063/1.1321055

    Article  Google Scholar 

  45. S. Glasstone, A. Sesonske, Nuclear reactor engineering. Nucl. Sci. Eng. 81, 484–485 (1982)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mohammed Sultan Al-Buriahi.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Al-Buriahi, M.S., Arslan, H. & Tonguc, B.T. Investigation of photon energy absorption properties for some biomolecules. NUCL SCI TECH 30, 103 (2019). https://doi.org/10.1007/s41365-019-0636-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s41365-019-0636-9

Keywords

Navigation