Skip to main content
Log in

Photon attenuation parameters for some tissues from Geant4 simulation, theoretical calculations and experimental data: a comparative study

  • Published:
Nuclear Science and Techniques Aims and scope Submit manuscript

Abstract

Mass attenuation coefficients, effective atomic numbers, effective electron densities and Kerma relative to air for adipose, muscle and bone tissues have been investigated in the photon energy region from 20 keV up to 50 MeV with Geant4 simulation package and theoretical calculations. Based on Geant4 results of the mass attenuation coefficients, the effective atomic numbers for the tissue models have been calculated. The calculation results have been compared with the values of the Auto-\(Z_{\text {eff}}\) program and with other studies available in the literature. Moreover, Kerma of studied tissues relative to air has been determined and found to be dependent on the absorption edges of the tissue constituent elements.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. ICRP, Basic Anatomical and Physiological Data for Use in Radiological Protection: Reference Values. ICRP Publication 89. Ann. ICRP 32 (2003)

  2. Y.S. Kim, Human tissues: chemical composition and photon dosimetry data. Radiat. Res. 57(1), 38–45 (1974). https://doi.org/10.2307/3573753

    Article  Google Scholar 

  3. D.R. White J. Booz, R.V. Griffith et al., ICRU Report 44: tissue substitutes in radiation dosimetry and measurement. J. ICRU os23 (1989). https://doi.org/10.1093/jicru/os23.1.Report44

    Article  Google Scholar 

  4. Y. Elmahroug, B. Tellili, C. Souga et al., Determination of total mass attenuation coefficients, effective atomic numbers and electron densities for different shielding materials. Ann. Nucl. Energy 75, 268–274 (2015). https://doi.org/10.1016/j.anucene.2014.08.015

    Article  Google Scholar 

  5. A. McNair, ICRU Report 33: radiation quantities and units. J. Label Compd. Radiopharm. 18, 1398 (1981). https://doi.org/10.1002/jlcr.2580180918

    Article  Google Scholar 

  6. R.T. Berger, The X- or gamma-ray energy absorption or transfer coefficient: tabulations and discussion. Radiat. Res. 15, 1–29 (1961). https://doi.org/10.2307/3571063

    Article  Google Scholar 

  7. J.W. Allison, Gamma-radiation absorption coefficients of various materials allowing for Bremsstrahlung and other secondary radiations. Aust. J. Phys. 14, 443–461 (1961). https://doi.org/10.1071/PH610443

    Article  Google Scholar 

  8. J.H. Hubbell, Photon mass attenuation and mass energy-absorption coefficients for H, C, N, O, Ar, and seven mixtures from 0.1 keV to 20 MeV. Radiat. Res. 70, 58–81 (1977). https://doi.org/10.2307/3574732

    Article  Google Scholar 

  9. J.H. Hubbell, Photon mass attenuation and energy-absorption coefficients. Int. J. Appl. Radiat. Isot. 33(11), 1269–1290 (1982). https://doi.org/10.1016/0020-708X(82)90248-4

    Article  Google Scholar 

  10. J.H. Hubbell, S.M. Seltzer, Tables of X-ray mass attenuation coefficients and mass energy-absorption coefficients 1 keV to 20 MeV for elements Z =1 to 92 and 48 additional substances of Dosimetric Interest. NIST Standard Reference Database 126 (1995). https://doi.org/10.18434/T4D01F

  11. M.J. Berger, J.H. Hubbell, S.M. Seltzer et al., XCOM: photon cross sections database. NIST Standard Reference Database 8 (1998). https://doi.org/10.18434/T48G6X

  12. L. Gerward, N. Guilbert, K.B. Jensen et al., WinXCom—a program for calculating X-ray attenuation coefficients. Radiat. Phys. Chem. 71(2004), 653–654 (2004). https://doi.org/10.1016/j.radphyschem.2004.04.040

    Article  Google Scholar 

  13. C.T. Chantler, Theoretical form factor, attenuation, and scattering tabulation for Z = 1–92 from E = 1–10 eV to E = 0.4–1.0 MeV. J. Phys. Chem. Ref. Data 24(1), 71–643 (1995). https://doi.org/10.1063/1.555974

    Article  Google Scholar 

  14. C.T. Chantler et al., X-ray form factor, attenuation and scattering tables. NIST Standard Reference Database 66 (2005). https://doi.org/10.18434/T4HS32

  15. S. Agostinelli, J. Allison, K. Amako et al., GEANT4—a simulation toolkit. Nucl. Instrum. Methods Phys. Res. A 506(3), 250–303 (2003). https://doi.org/10.1016/S0168-9002(03)01368-8

    Article  Google Scholar 

  16. M.E. Medhat, Y. Wang, Geant4 code for simulation attenuation of gamma rays through scintillation detectors. Ann. Nucl. Energy 62, 316–320 (2013). https://doi.org/10.1016/j.anucene.2013.06.034

    Article  Google Scholar 

  17. V.P. Singh, M.E. Medhat, N.M. Badiger, Photon attenuation coefficients of thermoluminescent dosimetric materials by Geant4 toolkit, XCOM program and experimental data: a comparison study. Ann. Nucl. Energy 68, 96–100 (2014). https://doi.org/10.1016/j.anucene.2014.01.011

    Article  Google Scholar 

  18. S.S. Obaid, M.I. Sayyed, D.K. Gaikwad et al., Photon attenuation coefficients of different rock samples using MCNPX, Geant4 simulation codes and experimental results: a comparison study. Radiat. Eff. Defect Solids 173(11–12), 900–914 (2018). https://doi.org/10.1080/10420150.2018.1505890

    Article  Google Scholar 

  19. A. Kumar, S.P. Singh, Y. Elmahroug et al., Gamma ray shielding studies on 26.66 B2O3–16GeO2–4Bi2O3–(53.3−x)PbO–xPbF2 glass system using MCNPX, Geant4 and XCOM. Mater. Res. Express 5(9), 095203 (2018). https://doi.org/10.1088/2053-1591/aad821

    Article  Google Scholar 

  20. R.M. Lokhande, B.S. Surung, P.P. Pawar, Measurement of effective atomic number and electron density of carbohydrates by using NIST, Geant4 and NaI(Tl): a comparative study. Int. J. Adv. Res. 5(5), 1733–1740 (2017). https://doi.org/10.21474/IJAR01/4303

    Article  Google Scholar 

  21. M.E. Medhat, S.P. Shirmardi, V.P. Singh, Comparison of Geant 4, MCNP simulation codes of studying attenuation of gamma rays through biological materials with XCOM and experimental data. J. Appl. Comput. Math. 3(6), 1000179 (2014). https://doi.org/10.4172/2168-9679.1000179

    Article  Google Scholar 

  22. M.I. Sayyed, H.O. Tekin, E.E. Altunsoy et al., Radiation shielding study of tellurite tungsten glasses with different antimony oxide as transparent shielding materials using MCNPX code. J. Non-Cryst. Solids 498, 167–172 (2018). https://doi.org/10.1016/j.jnoncrysol.2018.06.022

    Article  Google Scholar 

  23. B.O. Elbashir, M.G. Dong, M.I. Sayyed et al., Comparison of Monte Carlo simulation of gamma ray attenuation coefficients of amino acids with XCOM program and experimental data. Results Phys. 9, 6–11 (2018). https://doi.org/10.1016/j.rinp.2018.01.075

    Article  Google Scholar 

  24. M.I. Sayyed, S.A.M. Issa, M. Büyükyildiz et al., Determination of nuclear radiation shielding properties of some tellurite glasses using MCNP5 code. Radiat. Phys. Chem. 150, 1–8 (2018). https://doi.org/10.1016/j.radphyschem.2018.04.014

    Article  Google Scholar 

  25. K. Verdipoor, A. Alemi, A. Mesbahi, Photon mass attenuation coefficients of a silicon resin loaded with WO3, PbO, and Bi2O3 micro and nano-particles for radiation shielding. Radiat. Phys. Chem. 147, 85–90 (2018). https://doi.org/10.1016/j.radphyschem.2018.02.017

    Article  Google Scholar 

  26. A. Mesbahi, H. Ghiasi, Shielding properties of the ordinary concrete loaded with micro- and nano-particles against neutron and gamma radiations. Appl. Radiat. Isot. 136, 27–31 (2018). https://doi.org/10.1016/j.apradiso.2018.02.004

    Article  Google Scholar 

  27. G.J. Hine, The effective atomic numbers of materials for various gamma ray interactions. Phys. Rev 85, 725–737 (1952)

    Google Scholar 

  28. M.T. Islam, N.A. Rae, J.L. Glover et al., Measurement of the X-ray mass attenuation coefficients of gold in the 38–50-keV energy range. Phys. Rev. A 81, 022903 (2010). https://doi.org/10.1103/PhysRevA.81.022903

    Article  Google Scholar 

  29. B. Goswami, N. Chaudhuri, Measurements of gamma-ray attenuation coefficients. Phys. Rev. A 7, 1912–1916 (1973). https://doi.org/10.1016/0029-554X(73)90358-3

    Article  Google Scholar 

  30. B.S. Sidhu, A.S. Dhaliwal, K.S. Mann et al., Study of mass attenuation coefficients, effective atomic numbers and electron densities for some low Z compounds of dosimetry interest at 59.54 keV incident photon energy. Ann. Nucl. Energy 42, 153–157 (2012). https://doi.org/10.1016/j.anucene.2011.12.015

    Article  Google Scholar 

  31. H. Buhr, L. Büermann, M. Gerlach et al., Measurement of the mass energy-absorption coefficient of air for X-rays in the range from 3 to 60 keV. Phys. Med. Biol. 57(24), 8231–8247 (2012). https://doi.org/10.1088/0031-9155/57/24/8231

    Article  Google Scholar 

  32. B. Akça, S.Z. Erzeneoğlu, The mass attenuation coefficients, electronic, atomic, and molecular cross sections, effective atomic numbers, and electron densities for compounds of some biomedically important elements at 59.5 keV. Sci. Technol. Nucl. Install. 901465 (2014). https://doi.org/10.1155/2014/901465

    Article  Google Scholar 

  33. W. Geraldelli, A. Tomal, M.E. Poletti, Characterization of tissue-equivalent materials through measurements of the linear attenuation coefficient and scattering profiles obtained with polyenergetic beams. IEEE Trans. Nucl. Sci. 60(2), 566–571 (2013). https://doi.org/10.1109/TNS.2013.2248382

    Article  Google Scholar 

  34. N.A.B. Amin, J. Zukhi, N.A. Kabir et al., Determination of effective atomic number s from mass attenuation coefficients of tissue-equivalent materials in the energy range 60 keV–1.33 MeV. J. Phys. Conf. Ser. 851, 012018 (2017). https://doi.org/10.1088/1742-6596/851/1/012018

    Article  Google Scholar 

  35. C.A. Jayachandran, Calculated effective atomic number and Kerma values for tissue-equivalent and dosimetry materials. Phys. Med. Biol. 16(4), 617–623 (1971). https://doi.org/10.1088/0031-9155/16/4/005

    Article  Google Scholar 

  36. S.R. Manohara, S.M. Hanagodimath, K.S. Thind et al., The effective atomic number revisited in the light of modern photon-interaction cross-section databases. Appl. Radiat. Isot. 68(4–5), 784–787 (2010). https://doi.org/10.1016/j.apradiso.2009.09.047

    Article  Google Scholar 

  37. K.S. Mann, M. Kurudirek, G.S. Sidhu, Verification of dosimetric materials to be used as tissue-substitutes in radiological diagnosis. Appl. Radiat. Isot. 70(4), 681–691 (2012). https://doi.org/10.1016/j.apradiso.2011.12.008

    Article  Google Scholar 

  38. M.L. Taylor, R.L. Smith, F. Dossing et al., Robust calculation of effective atomic numbers: the Auto-Zeff software. Med. Phys. 39(4), 1769–1778 (2012). https://doi.org/10.1118/1.3689810

    Article  Google Scholar 

  39. A. Un, T. Caner, The direct-\(Z_{eff}\) software for direct calculation of mass attenuation coefficient, effective atomic number and effective electron number. Ann. Nucl. Energy 65, 158–165 (2014). https://doi.org/10.1016/j.anucene.2013.10.041

    Article  Google Scholar 

  40. R. Nowotny, XMuDat: photon attenuation data on PC. IAEA Report IAEA-NDS 195 (1998)

  41. A.M. El-Khayatt, NXcom—a program for calculating attenuation coefficients of fast neutrons and gamma-rays. Ann. Nucl. Energy 38(1), 128–132 (2011). https://doi.org/10.1016/j.anucene.2010.08.003

    Article  Google Scholar 

  42. H.C. Manjunatha, B. Rudraswamy, Study of effective atomic number and electron density for tissues from human organs in the energy range of 1 keV–100 GeV. Health Phys. 104(2), 158–162 (2013). https://doi.org/10.1097/HP.0b013e31827132e3

    Article  Google Scholar 

  43. M. Kurudirek, Effective atomic numbers, water and tissue equivalence properties of human tissues, tissue equivalents and dosimetric materials for total electron interaction in the energy region 10 keV–1 GeV. Appl. Radiat. Isot. 94, 1–7 (2014). https://doi.org/10.1016/j.apradiso.2014.07.002

    Article  Google Scholar 

  44. V.R. Shivaramu, Effective atomic number for photon energy absorption and photon attenuation of tissues from human organs. Med. Dosim. 27, 1–9 (2002). https://doi.org/10.1016/S0958-3947(01)00078-4

    Article  Google Scholar 

  45. V.P. Singh, N.M. Badiger, N. Kucuk, Assessment of methods for estimation of effective atomic numbers of common human organ and tissue substitutes: waxes, plastics and polymers. Radioprotection 49(2), 115–121 (2014). https://doi.org/10.1051/radiopro/2013090

    Article  Google Scholar 

  46. M. Kurudirek, T. Onaran, Calculation of effective atomic number and electron density of essential biomolecules for electron, proton, alpha particle and multi-energetic photon interactions. Radiat. Phys. Chem. 112, 125–138 (2015). https://doi.org/10.1016/j.radphyschem.2015.03.034

    Article  Google Scholar 

  47. D. Salehi, D. Sardari, M.S. Jozani, Investigation of some radiation shielding parameters in soft tissue. J. Radiat. Res. Appl. Sci. 8(3), 439–445 (2015). https://doi.org/10.1016/j.jrras.2015.03.004

    Article  Google Scholar 

  48. M. Kurudirek, Effective atomic number of soft tissue, water and air for interaction of various hadrons, leptons and isotopes of hydrogen. Int. J. Radiat. Biol. 93(12), 1299–1305 (2017). https://doi.org/10.1080/09553002.2018.1388546

    Article  Google Scholar 

  49. D.K. Gaikwad, M.I. Sayyed, S.S. Obaid et al., Gamma ray shielding properties of TeO2–ZnF2–As2O3–Sm2O3 glasses. J. Alloys Compd. 765, 451–458 (2018). https://doi.org/10.1016/j.jallcom.2018.06.240

    Article  Google Scholar 

  50. J. Apostolakis, A. Bagulya, S. Elles et al., Validation and verification of Geant4 standard electromagnetic physics. J. Phys. Conf. Ser. 219, 032044 (2010). https://doi.org/10.1088/1742-6596/219/3/032044

    Article  Google Scholar 

  51. B.T. Tonguc, H. Arslan, M.S. Al-Buriahi, Studies on mass attenuation coefficients, effective atomic numbers and electron densities for some biomolecules. Radiat. Phys. Chem. 153, 86–91 (2018). https://doi.org/10.1016/j.radphyschem.2018.08.025

    Article  Google Scholar 

  52. D.F. Jackson, H.J. David, X-ray attenuation coefficients of elements and mixtures. Phys. Rep. 70, 169–233 (1981). https://doi.org/10.1016/0370-1573(81)90014-4

    Article  Google Scholar 

  53. S.R. Manohara, S.M. Hanagodimath, L. Gerward, Studies on effective atomic number, electron density and kerma for some fatty acids and carbohydrates. Phys. Med. Biol. 53(20), N377–86 (2008). https://doi.org/10.1088/0031-9155/53/20/N01

    Article  Google Scholar 

  54. D. Yilmaz, Y. Şahin, L. Demir, Studies on mass attenuation coefficient, mass energy absorption coefficient, and kerma for Fe alloys at photon energies of 17.44 to 51.70 keV. Turk. J. Phys. 39(1), 81–90 (2015). https://doi.org/10.3906/fiz-1408-4

    Article  Google Scholar 

Download references

Acknowledgements

The author would like to thank Mohammed Al-Buriahi for his contributions in theoretical calculations.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Halil Arslan.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Arslan, H. Photon attenuation parameters for some tissues from Geant4 simulation, theoretical calculations and experimental data: a comparative study. NUCL SCI TECH 30, 96 (2019). https://doi.org/10.1007/s41365-019-0617-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s41365-019-0617-z

Keywords

Navigation