Skip to main content
Log in

Hydrological modelling using the distributed hydrological model CEQUEAU in a semi-arid mountainous area: a case study of Ourika watershed, Marrakech Atlas, Morocco

  • Original Paper
  • Published:
Euro-Mediterranean Journal for Environmental Integration Aims and scope Submit manuscript

Abstract

The Hydrological modelling in a semi-arid mountainous area is very challenging due to the irregular climate and the spatial variability of vegetation cover and topography. The hydrological model CEQUEAU was used with a daily time step on the arid and semi-arid mountainous region of the Ourika watershed. The capability of the model to simulate the daily streamflow was evaluated. The sensitivity analysis was carried out to understand which parameters had the largest influence on model outputs. The results show that the calibration and validation simulations of the daily stream flows could be considered satisfactory. The sensitivity analysis demonstrated that each of the model parameters (snowmelt and soil parameters) had a certain degree of influence on model Behaviour. The model was more sensitive to Threshold of rain-snow transformation (STRNE), Infiltration coefficient in the LOWER ZONE reservoir (CIN) and Infiltration threshold of the UPPER ZONE reservoir towards the LOWER ZONE reservoir (HINF) parameters. However, the Coefficient taken away at a potential rate by evapotranspiration (HPOT) parameters of low draining of the LOWER ZONE reservoir (CVNB), Intermediate draining threshold of the UPPER ZONE reservoir (HINT), Threshold of high draining of the LOWER ZONE reservoir (HNAP) and Threshold of water, had no significant influence on the model performance in relation to the Nash criterion.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Anderson J (1997) Combinatorial designs and tournaments. Oxford lecture series in mathematics and its applications 6. Oxford Sciences Publication

  • Andrade E, Rodrigues R, Palácio H, Brasil J, Filho J (2018) Hydrological responses of a watershed to vegetation changes in a tropical semi-arid region. Revista Caatinga 31(1):161–170. https://doi.org/10.1590/1983-21252018v31n119rc

    Article  Google Scholar 

  • Ayadi M, Bargaoui Z (1998) Modelling of flow of the Miliane River using the CEQUEAU model. Hydrol Sci J 43(5):741–758. https://doi.org/10.1080/02626669809492170

    Article  Google Scholar 

  • AytOugougdal H, YacoubiKhebiza M, Messouli M, Lachir A (2020) Assessment of future water demand and supply under IPCC climate change and socio-economic scenarios, using a combination of models in Ourika watershed, High Atlas, Morocco. Water 12:1751. https://doi.org/10.3390/w12061751

    Article  Google Scholar 

  • Bâ M, Díaz-Delgado C, Quentin E, Guerra-Cobián VH, Ojeda-Chihuahua J, Cârsteanu A, Franco-Plata R (2013) Modelado hidrológico de grandes cuencas: caso de estudio del río Senegal, África Occidental. Tecnología y Ciencias Del Agua IV 2:129–136

    Google Scholar 

  • Bâ KM, Quentin E, Carsteanu E, Ojeda A, Diaz-Delgado I, Guerracobian C (2009) Modelling a large watershed using the CEQUEAU model and GIS: Case of the Senegal River at Bakel. Geophys Res Abstr 11:EGU2009-0

    Google Scholar 

  • Baba MW, Boudhar A, Gascoin S, Hanich L, Marchane A, Chehbouni A (2021) Assessment of MERRA-2 and ERA5 to model the snow water equivalent in the high atlas (1981–2019). Water 13:890. https://doi.org/10.3390/w13070890

    Article  Google Scholar 

  • Bennani O, Druon E, Leone F, Tramblay Y, Saidi ME (2019) A spatial and integrated flood risk diagnosis: relevance for disaster prevention at Ourika valley (High Atlas-Morocco). Disaster Prev Manage Int J 28(5):548–564. https://doi.org/10.1108/DPM-12-2018-0379

    Article  Google Scholar 

  • Bouaida J, Witam O, Ibnoussina M, Delmaki A, Benkirane M (2021) Contribution of remote sensing and GIS to analysis of the risk of flooding in the Zat basin (High Atlas-Morocco). Nat Hazards 108:1835–1851. https://doi.org/10.1007/s11069-021-04758-x

    Article  Google Scholar 

  • Boudaghpour S, Bagheri M, Bagheri Z (2014) Estimation of flood environmental effects using flood zone mapping techniques in Halilrood Kerman, Iran. Arab J Sci Eng 40(3):659–675. https://doi.org/10.1007/s13369-014-1536-2

    Article  Google Scholar 

  • Boumenni H, Bachnou A, Alaa NE (2017) The rainfall-runoff model GR4J optimization of parameter by genetic algorithms and Gauss-Newton method: application for the watershed Ourika (High Atlas Morocco). Arab J Geosci. https://doi.org/10.1007/s12517-017-3086-x

    Article  Google Scholar 

  • Bouras E, Jarlan L, Khabba S, Er-Raki S, Dezetter A, Sghir F, Tramblay Y (2019) Assessing the impact of global climate changes on irrigated wheat yields and water requirements in a semi-arid environment of Morocco. Sci Rep 9:19142. https://doi.org/10.1038/s41598-019-55251-2

    Article  Google Scholar 

  • Bouvier C, Delclaux F (1996) ATHYS: A hydrological environment for spatial modelling and coupling with GIS. HydroGIS 96: Application of Geographic Information Systems in Hydrology and Water Resources Management. Proceedings of the Vienna Conference. IAHS Publ.no.235, pp 19–27

  • Brisson C, Boucher MA, Latraverse M (2015) Illustration of the added value of using a multi-site calibration and correction approach to reconstruct natural inflows and inter-catchment transfer flow: a case study. Can J Civ Eng 42(5):342–352. https://doi.org/10.1139/cjce-2014-0270

    Article  Google Scholar 

  • Chen H, Liang Q, Liu Y, Xie S (2018) Hydraulic correction method (HCM) to enhance the efficiency of SRTM DEM in flood modeling. J Hydrol 559:56–70. https://doi.org/10.1016/j.jhydrol.2018.01.056

    Article  Google Scholar 

  • Domeneghetti A (2016) On the use of SRTM and altimetry data for flood modeling in data-sparse regions. Water Resour Res 52(4):2901–2918. https://doi.org/10.1002/2015wr017967

    Article  Google Scholar 

  • Duchemin M, Lachance M, Morin G, Lagacé E (2001) Approche géomatique pour simuler l’érosion hydrique et le transport des sédiments à l’échelle des petits bassins versants. Water Qual Res J Can 36(3):435–473

    Article  Google Scholar 

  • Dugdale SJ, St- Hilaire A, Curry RA (2017) Automating drainage direction and physiographic inputs to the CEQUEAU hydrological model: sensitivity testing on the lower Saint John River watershed, Canada. J Hydroinform 19(3):469–492. https://doi.org/10.2166/hydro.2017.051

    Article  Google Scholar 

  • Edijatno (1991) Mise au Point D’un Modèle Elementaire Pluie—Débit au pas de Temps Journalier. Doctoral Theses. Université Louis Pasteur de Strasbourg. Institut de Mecanique des Fluides. Ecole Nationale des Ingénieurs des Travaux Ruraux et des Techniques Sanitaires de Strasbourg, pp 1–242

  • El Khalki E, Tramblay Y, Saidi ME, Bouvier C, Hanich L, Benrhanem M, Alaouri M (2018) Comparison of modeling approaches for flood forecasting in the High Atlas Mountains of Morocco (2018). Arab J Geosci 11:410. https://doi.org/10.1007/s12517-018-3752-7

    Article  Google Scholar 

  • El Khalki E, Tramblay Y, Massari C, Brocca L, Simmoneaux V, Gascoin G, Saidi ME (2020a) Challenges in flood modeling over data-scarce regions: how to exploit globally available soil moisture products to estimate antecedent soil wetness conditions in Morocco. Nat Hazards Earth Syst Sci 20:2591–2607. https://doi.org/10.5194/nhess-20-2591-2020

    Article  Google Scholar 

  • El Khalki EM, Tramblay Y, Amengual A, Homar V, Romero R, Saidi MEM, Alaouri M (2020b) Validation of the AROME, ALADIN and WRF meteorological models for flood forecasting in Morocco. Water 12(2):437. https://doi.org/10.3390/w12020437

    Article  Google Scholar 

  • Eleuch S, Carsteanu AA, Ba K, Magagi R, Goita K, Díaz-Delgado C (2010) Validation and use of rainfall radar data to simulate water flows in the Río Escondido Basin. Stoch Environ Res Risk Assess 24:559–565. https://doi.org/10.1007/s00477-009-0336-9

    Article  Google Scholar 

  • Falorni G, Teles V, Vivoni ER, Bras RL, Amaratunga KS (2005) Analysis and characterization of the vertical accuracy of digital elevation models from the Shuttle Radar Topography Mission. J Geophys Res. https://doi.org/10.1029/2003jf000113

    Article  Google Scholar 

  • Farr TG, Rosen PA, Caro E et al (2007) The shuttle radar topography mission. Rev Geophys. https://doi.org/10.1029/2005rg000183

    Article  Google Scholar 

  • El Alaoui El Fels A, Alaa N, Bachnou A, Rachidi S (2018) Flood frequency analysis and generation of flood hazard indicator maps in a semi-arid environment, case of Ourika watershed (western High Atlas, Morocco). J Afr Earth Sci 141:94–106. https://doi.org/10.1016/j.jafrearsci.2018.02.004

    Article  Google Scholar 

  • El Alaoui El Fels A, Bachnou A, Alaa N (2017) Combination of GIS and mathematical modeling to predict floods in semiarid areas: case of Rheraya watershed (Western High Atlas, Morocco). Arab J Geosci 10:554. https://doi.org/10.1007/s12517-017-3345-x

    Article  Google Scholar 

  • Elalaouielfels A, Saidi ME, Bouiji A, Benrhanem M (2021) Rainfall regionalization and variability of extreme precipitation using artificial neural networks: a case study from western central Morocco. J Water Clim Change 12(4):1107–1122. https://doi.org/10.2166/wcc.2020.217

    Article  Google Scholar 

  • Fniguire F, Laftouhi NE, Saidi ME, Zamrane Z, El Himer H, Khalil N (2017) Spatial and temporal analysis of the drought vulnerability and risks over eight decades in a semi-arid region (Tensift basin: Morocco). Theoret Appl Climatol 130:321–330. https://doi.org/10.1007/s00704-016-1873-z

    Article  Google Scholar 

  • Fniguire F (2016) Rain-flow modeling, by CEQUEAU and Athys, in the Ourika watershed (Tensift basin, Morocco). Doctoral Thesis. Cadi Ayyad university, Marrakech, p 212

  • François B, Hingray B, Hendrickx F, Creutin JD (2014) Seasonal patterns of water storage as signatures of the climatological equilibrium between resource and demand. Hydrol Earth Syst Sci 18(9):3787–3800. https://doi.org/10.5194/hess-18-3787-2014

    Article  Google Scholar 

  • Gadouali F, Messouli M (2020) Evaluation of multiple satellite-derived rainfall products over Morocco. Int J Hydrol Sci Technol 10(1):72–89. https://doi.org/10.1504/IJHST.2020.104988

    Article  Google Scholar 

  • Hadri A, Saidi ME, Boudhar A (2021) Multiscale drought monitoring and comparison using remote sensing in a Mediterranean arid region: a case study from west-central Morocco. Arab J Geosci 14:118. https://doi.org/10.1007/s12517-021-06493-w

    Article  Google Scholar 

  • HanadéHoumma I, El Mansouri L, Hadria R, Emran A, Chehbouni A (2020) Retrospective analysis and version improvement of the satellite-based drought composite index. A Semi-Arid Tensift-Morocco Application. Geocarto Int. https://doi.org/10.1080/10106049.2020.1844314

    Article  Google Scholar 

  • Heynen M, Pellicciotti F, Carenzo M (2013) Parameter sensitivity of a distributed enhanced temperature-index melt model. Ann Glaciol 54(63):311–321. https://doi.org/10.3189/2013AoG63A537

    Article  Google Scholar 

  • Hingray B, Picouet C, Musy A (2009) Hydrologie 2—Une science pour l'ingénieur Editeur: Lausanne: Presses polytechniques et universitaire romandes

  • Kim DE, Liong SY, Gourbesville P, Andres L, Liu J (2020) Simple-yet-effective SRTM DEM improvement scheme for dense urban cities using ANN and remote sensing data: application to flood modeling. Water 12(3):816. https://doi.org/10.3390/w12030816

    Article  Google Scholar 

  • Kouamé KF, Bernier M, Goné DL, Saley MB, Lefèbvre R, Soro N, Koudou A (2007) Intégration de données Geospatiales dans un modèle Hydrologique distribue pour la Simulation des écoulements des Eaux en milieu tropical humide de Cote d’ivoire (Afrique de l’ouest). Revue Télédétection 7:217–235

    Google Scholar 

  • Le Lay M (2006) Modélisation Hydrologique Dans un Contexte de Variable Hydro- Climatique : Une approche comparative pour l’étude du cycle hydrologique à méso- échelle au Bénin. Doctoral Thesis. Institut National Polytechnique de Grenoble. Laboratoire d’étude des Transferts en Hydrologie et Environnement (LTHE. UMR 5564. CNRS- INPG- IRD- UJF), p 251

  • Luce CH, Tarboton DG, Cooley KR (1997) Spatially distributed snowmelt inputs to a semi-arid mountain watershed. Proceedings of the 65th Annual Western Snow Conference. Available at: https://www.researchgate.net/publication/2862962_Spatially_Distributed_Snowmelt_Inputs_to_a_Semi-Arid_Mountain_Watershed. Accessed 23 Oct 2013

  • Makhlouf Z (1994) Compléments Sur Le Modèle Pluies—Débit GR4J Et Essai D’Estimation De Ses Paramètres. Doctoral Thesis. Université Paris Sud, Laboratoire d’Hydrologie et de Géochimie Isotopique Orsay, p 426

  • Mansir I, Bouchaou L, Chebli B, AitBrahim Y, Choukr-Allah R (2021) A specific indicator approach for the assessment of water resource vulnerability in arid areas: the case of the Souss-Massa Region (Morocco). Hydrol Sci J. https://doi.org/10.1080/02626667.2021.1924379

    Article  Google Scholar 

  • Marchandise A (2007) Modélisation Hydrologique Distribuée Sur Le Gardon D’anduze, Etude Comparative De Différents Modèles Pluie-Débit, Extrapolation De La Normale A L'extrême Et Tests D'hypothèses Sur Les Processus Hydrologiques. Doctoral Thesis. Université Montpellier II Sciences Et Techniques Du Languedoc, p 214

  • Marchane A, Boudhar A, Baba MW, Hanich L, Chehbouni A (2021) Snow lapse rate changes in the atlas mountain in morocco based on MODIS time series during the period 2000–2016. Remote Sens 13:3370. https://doi.org/10.3390/rs13173370

    Article  Google Scholar 

  • Mercado VD, Perez GC, Solomatine D, Van Lanen HAJ (2016) Spatio-temporal analysis of hydrological drought at catchment scale using a spatially-distributed hydrological model. Procedia Eng 154:738–744. https://doi.org/10.1016/j.proeng.2016.07.577

    Article  Google Scholar 

  • Morin G, Paquet P (2007) Modèlehydrologique CEQUEAU, INRS-ETE. Rapport de recherche no R000926, p 458

  • Morin G (2002) CEQUEAU hydrological model. In: Singh VP, Frevert DK (eds) Mathematical models of large watershed hydrology, pp 507–576

  • Mukherjee S, Joshi PK, Mukherjee S, Ghosh A, Garg RD, Mukhopadhyay A (2013) Evaluation of vertical accuracy of open source Digital Elevation Model (DEM). Int J Appl Earth Obs Geoinf 21:205–217. https://doi.org/10.1016/j.jag.2012.09.004

    Article  Google Scholar 

  • Mukul M, Srivastava V, Mukul M (2015) Analysis of the accuracy of Shuttle Radar Topography Mission (SRTM) height models using International Global Navigation Satellite System Service (IGS) Network. J Earth Syst Sci 124:1343–1357. https://doi.org/10.1007/s12040-015-0597-2

    Article  Google Scholar 

  • Nash JE, Sutcliffe JV (1970) River flow forecasting through conceptual models. Part 1, A discussion of principles. J Hydrol 10:282–290. https://doi.org/10.1016/0022-1694(70)90255-6

    Article  Google Scholar 

  • Nelson A, Reuter HI, Gessler P (2009) DEM production methods and sources. Dev Soil Sci 33:65–85

    Google Scholar 

  • Nouaceur Z, Murărescu O (2016) Rainfall variability and trend analysis of annual rainfall in North Africa. Int J Atmos Sci 2016:1–12. https://doi.org/10.1155/2016/7230450

    Article  Google Scholar 

  • Ouatiki H, Boudhar A, Ouhinou A, Beljadid A, Leblanc M, Chehbouni A (2020) Sensitivity and interdependency analysis of the HBV conceptual model parameters in a semi-arid mountainous watershed. Water 12:2440. https://doi.org/10.3390/w12092440

    Article  Google Scholar 

  • Peel MC, Blöschl G (2011) Hydrological modelling in a changing world. Prog Phys Geogr 35(2):249–261. https://doi.org/10.1177/0309133311402550

    Article  Google Scholar 

  • Saidi ME, Daoudi L, Aresmouk MEH, Blali A (2003) Rôle du milieu physique dans l’amplification des crues en milieu montagnard, exemple de la crue du 17 août 1995 dans la vallée de l’Ourika (Haut-Atlas, Maroc). Science Et Changements Planétaires/Sécheresse 14(2):107–114

    Google Scholar 

  • Saidi ME, Daoudi L, Aresmouk MEH, Fniguire F, Boukrim S (2010) Les crues de l’oued Ourika (Haut Atlas, Maroc): Événements extrêmes en contexte montagnard semi-aride. Comunicações Geológicas, T 97:113–128

    Google Scholar 

  • Saidi ME, Saouabe T, El Alaoui El Fels A, El Khalki EM, Hadri A (2020) Hydro-meteorological characteristics and occurrence probability of extreme flood events in Moroccan High Atlas. J Water Clim Change 11(S1):310–321. https://doi.org/10.2166/wcc.2020.069

    Article  Google Scholar 

  • Saouabe T, El Khalki EM, Saidi MEM, Najmi A, Hadri A, Rachidi S, Jadoud M, Tramblay Y (2020) Evaluation of the GPM-IMERG precipitation product for flood modeling in a semi-arid mountainous basin in Morocco. Water 12(9):2516. https://doi.org/10.3390/w12092516

    Article  Google Scholar 

  • Schumann G, Di Baldassarre G, Alsdorf D, Bates PD (2010) Near real time flood wave approximation on large rivers from space: application to the River Po, Italy. Water Resour Res. https://doi.org/10.1029/2008WR007672

    Article  Google Scholar 

  • Taleb H (2006) Water management in Morocco. In: Dura G, Kambourova V, Simeonova F (eds) Management of Intentional and Accidental Water Pollution. NATO Security through Science Series. Springer, Dordrecht, pp 177–180. https://doi.org/10.1007/1-4020-4800-9_15

    Chapter  Google Scholar 

  • Tognetti R, Lasserre B, Di Febbraro M, Marchetti M (2019) Modeling regional drought-stress indices for beech forests in Mediterranean mountains based on tree-ring data. Agric for Meteorol 265:110–120. https://doi.org/10.1016/j.agrformet.2018.11.015

    Article  Google Scholar 

  • Vinet F, Saidi ME, Douvinet J, Fehri N, Nasrallah W, Menad W, Mellas S (2016) Urbanization and land use as a driver of flood risk. The Mediterranean Region under Climate Change. A Scientific Update. IRD éditions, Marseille. ISBN: 978-2-7099-2219-7, p 563–575

  • Yan K, Di Baldassarre G, Solomatine DP, Schumann GJP (2015) A review of low-cost space-borne data for flood modelling: topography, flood extent and water level. Hydrol Process 29(15):3368–3387. https://doi.org/10.1002/hyp.10449

    Article  Google Scholar 

  • Zengin H, Özcan M, Değermenci AS, Çitgez T (2017) Effects of some watershed characteristics on water yield in the West Black Sea Region of northern Turkey. Bosque 38(3):479–486. https://doi.org/10.4067/S0717-92002017000300005

    Article  Google Scholar 

  • Zkhiri W, Tramblay Y, Hanich L, Berjamy B (2017) Regional flood frequency analysis in the High Atlas mountainous catchments of Morocco. Nat Hazards 86:953–967. https://doi.org/10.1007/s11069-016-2723-0

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Fatima Fniguire.

Additional information

Responsible Editor: Helder I. Chaminé

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Fniguire, F., Laftouhi, NE., Al-Mahfadi, A.S. et al. Hydrological modelling using the distributed hydrological model CEQUEAU in a semi-arid mountainous area: a case study of Ourika watershed, Marrakech Atlas, Morocco. Euro-Mediterr J Environ Integr 7, 89–102 (2022). https://doi.org/10.1007/s41207-021-00287-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s41207-021-00287-y

Keyword

Navigation