Skip to main content
Log in

E-Bayesian and Hierarchical Bayesian Estimation of Rayleigh Distribution Parameter with Type-II Censoring from Imprecise Data

  • Research Article
  • Published:
Journal of the Indian Society for Probability and Statistics Aims and scope Submit manuscript

Abstract

Bayesian estimation methods for Rayleigh distribution parameter affect accurate information. However, in real-world conditions, empirical performance results cannot always be recorded or measured accurately. Thus, we'd like to generalize the estimated methods for real numbers to fuzzy numbers. during this paper, Bayesian, E-Bayesian and Hierarchical Bayesian (H-Bayesian) methods are discussed for Rayleigh distribution parameter on the idea of a Type-II censoring schemes under the squared error loss function. Data is taken into account as imprecise and within the form fuzzy numbers. Then, the efficiency of estimation methods is compared via Monte Carlo simulation. Finally, a true data set for the needs described is analyzed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure1

Similar content being viewed by others

References

  • Akbari MG, Rezaei A (2007) An uniformly minimum variance unbiased point estimator using fuzzy observations. Austrian J Statistics 36(4):307–317

    Google Scholar 

  • Arifujjaman Md, Iqbal MT, Quaicoe JE (2008) Energy capture by a small wind-energy conversion system. Appl Energy 85:41–51

    Article  Google Scholar 

  • Aslam M (2007) Double acceptance sampling based on truncated life tests in Rayleigh distribution. Eur J Sci Res 17:605–611

    Google Scholar 

  • Balakrishnan N, Cohen AC (1991) Order statistics and inference: estimation methods. Academic Press, San Diego

    MATH  Google Scholar 

  • Berger JO (1985) Statistical decision theory and Bayesian analysis, 2nd edn. Springer-Verlag, New York

    Book  Google Scholar 

  • Brillinger DR (1982) Seismic risk assessment: some statistical aspects. Earthq Predict 1:183–195

    Google Scholar 

  • Celik AN (2004) A statistical analysis of wind power density based on the Weibull and Rayleigh models at the southern region of Turkey, Renew. Energy 29:593–604

    Google Scholar 

  • Cohen AC (1963) Progressively censored samples in the life testing. Technometrics 5:327–339

    Article  MathSciNet  Google Scholar 

  • Coppi R, Gil MA, Kiers HAL (2006) The fuzzy approach to statistical analysis. Comput Stat Data Anal 51:1–14

    Article  MathSciNet  Google Scholar 

  • Dey S, Das MK (2007) A note on prediction interval for a Rayleigh distribution: Bayesian approach. Am J Math Manage Sci 27:43–48

    MathSciNet  MATH  Google Scholar 

  • Fernández AJ (2000) Bayesian inference from type II doubly censored Rayleigh data. Stat Probab Lett 48:393–399

    Article  MathSciNet  Google Scholar 

  • Gross AJ, Clark VA (1975) Survivals distributions: reliability applications in the biomedical sciences. Wiley, New York

    MATH  Google Scholar 

  • Han M (1997) The structure of hierarchical prior distribution and its applications. Chin Operations Res Manag Sci 63:31–40

    Google Scholar 

  • Han M (2009) E-Bayesian estimation and hierarchical Bayesian estimation of failure rate. Appl Math Model 33(4):1915–1922

    Article  MathSciNet  Google Scholar 

  • Han M (2011) E-Bayesian estimation of the reliability derived from Binomial distribution. Appl Math Model 35:2419–2424

    Article  MathSciNet  Google Scholar 

  • Han M (2017) The E-Bayesian and hierarchical Bayesian estimations for the system reliability parameter. Commun Statistics-Theory Methods 46(4):1606–1620

    Article  MathSciNet  Google Scholar 

  • Howlader HA (1985) HPD prediction intervals for Rayleigh distribution. IEEE Trans Reliab 34:121–123

    Article  Google Scholar 

  • Huang HZ, Zuo MJ, Sun ZQ (2006) Bayesian reliability analysis for fuzzy lifetime data. Fuzzy Sets Syst 157(12):1674–1686

    Article  MathSciNet  Google Scholar 

  • Iliopoulos G, Balakrishnan N (2011) Exact likelihood inference for laplace distribution based on type-II censored samples. J Statistical Plan Inference 141(3):1224–1239

    Article  MathSciNet  Google Scholar 

  • Jaheen ZF, Okasha HM (2011) E-Bayesian estimation for the Burr type XII model based on type-2 censoring. Appl Math Model 35:4730–4737

    Article  MathSciNet  Google Scholar 

  • Jowder FAL (2006) Weibull and Rayleigh distribution functions of wind speeds in Kingdom of Bahrain. Wind Eng 30:439–446

    Article  Google Scholar 

  • Kundu D, Raqab MZ (2012) Bayesian inference and prediction of order statistics for a Type-II censored Weibull distribution. J Statistical Plan Inference 142(1):41–47

    Article  MathSciNet  Google Scholar 

  • Lalitha S, Mishra A (1996) Modified maximum likelihood estimation for Rayleigh distribution. Comm Stat Theory Methods 25:389–401

    Article  MathSciNet  Google Scholar 

  • Liang T (2007) Empirical Bayes testing for mean life time of Rayleigh distribution. J Appl Math Comput 25:1–15

    Article  MathSciNet  Google Scholar 

  • Lindley DV (1980) Approximate Bayesian methods. Trabajos De Estadistica De Investig Operativa 31(1):223–237

    Article  MathSciNet  Google Scholar 

  • Lindley DV, Smith A (1972) Bayes estimation for the linear model. J R Statistical Soc-Ser B 34:1–41

    MATH  Google Scholar 

  • Marshall JS, Hitschfeld W (1953) Interpretation of the fluctuating echo from randomly distributed scatterers, Part I. Can J Phys 31:962–994

    Article  Google Scholar 

  • Ng HKT, Kundu D, Balakrishnan N (2006) Point and interval estimation for the two parameter Birnbaum-Saunders distribution based on type-II censored samples. Comput Stat Data Anal 50(11):3222–3242

    Article  MathSciNet  Google Scholar 

  • Pak A, Parham GH, Saraj M (2013) Inference for the Weibull distribution based on fuzzy data. Revista Colombiana De Estadística 36(2):339–358

    MathSciNet  Google Scholar 

  • Polovko AM (1968) Fundamentals of reliability theory. Academic Press, New York

    MATH  Google Scholar 

  • Rayleigh J (1880) On the resultant of a large number of vibrations of the same pitch and of arbitrary phase. Philos Mag 10:73–78

    Article  Google Scholar 

  • Singh U, Kumar A (2007) Bayesian estimation of the exponential parameter under a multiply type II censoring scheme. Austrian J Statistics 36(3):227–238

    Google Scholar 

  • Sinha SK, Howlader HA (1983) Credible and HPD intervals of the parameter and reliability of Rayleigh distribution, IEEE Trans. Reliab 32:217–220

    Article  Google Scholar 

  • Tayfuna MA, Fedeleb F (2007) Wave-height distributions and nonlinear effects. Ocean EnG 34:1631–1649

    Article  Google Scholar 

  • Tuthill TA, Sperry RH, Parker KJ (1988) Deviation from Rayleigh statistics in ultrasonic speckle. Ultrason Imaging 10:81–90

    Article  Google Scholar 

  • Von Alven WH (1964) Reliability engineering by ARINC. Prentice-Hall, Englewood Cliffs

    Google Scholar 

  • Wang J, Li D, Chen D (2012) E-Bayesian estimation and hierarchical Bayesian estimation of the system reliability parameter. Syst Eng Procedia 3:282–289

    Article  Google Scholar 

  • Yousefzadeh F (2017) E-Bayesian and hierarchical Bayesian estimations for the system reliability parameter based on asymmetric loss function. Commun Statistics-Theory Methods 46(1):1–8

    Article  MathSciNet  Google Scholar 

  • Zadeh LA (1968) Probability measures of fuzzy events. J Math Anal Appl 10:421–427

    Article  MathSciNet  Google Scholar 

  • Zagzebski JA, Chen JF, Dong F, Wilson T (1999) Intervening attenuation affects first-order statistical properties of ultrasound echo signals. IEEE Trans Ultrason Ferroelectr Freq Control 46:35–40

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Einollah Deiri.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Heidari, K.F., Deiri, E. & Jamkhaneh, E.B. E-Bayesian and Hierarchical Bayesian Estimation of Rayleigh Distribution Parameter with Type-II Censoring from Imprecise Data. J Indian Soc Probab Stat 23, 63–76 (2022). https://doi.org/10.1007/s41096-021-00112-3

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s41096-021-00112-3

Keywords

Navigation