Skip to main content

Advertisement

Log in

Automated Large-Scale Mapping of the Jahazpur Mineralised Belt by a MapReduce Model with an Integrated ELM Method

  • Original Article
  • Published:
PFG – Journal of Photogrammetry, Remote Sensing and Geoinformation Science Aims and scope Submit manuscript

Abstract

High-resolution hyperspectral remote sensing can provide a large-scale mapping of pure spectra along with perturbed/mixed spectra of minerals within a scene. Among the high-computational “per-pixel” methods, machine learning is a well-known automated technique to data science, being most flexible to map new spectra or perturbed/mixed spectra of minerals as an individual category. Since limited mineral samples often partly represent the complex mineralogy of a large site, a distributed mapping requires to be conducted using a scalable method that works even with a smaller number of training samples. In this regard, we introduce an integrated extreme learning machine (IELM) method that maps qualitatively the pure spectra and perturbed/mixed spectra of every surface type. This mapping has been further integrated into a quantitative analysis of the perturbation/mixing nature of pure spectra. The large-scale mapping of the Jahazpur mineralised belt has been conducted by a MapReduce model with the IELM method using AVIRIS-NG (Airborne Visible-Infrared Imaging Spectrometer-Next Generation) observation. In the validation process, the IELM method achieves 98.08% accuracy with high signal-to-noise (SNR) valued AVIRIS-NG data and 96.54% with low-SNR synthetic data in the presence of 269 training samples. The IELM method shows better efficacy than a spectral feature fitting approach in assessment. The analyses of perturbed and mixed spectra implicate that an additive spectral variability model and linear mixing model fit for the present data of our investigation. These analytical findings can be further extended for a “sub-pixel” method (e.g. spectral unmixing) to reach an application like lithology or host-rock mapping.

Zusammenfassung

Automatisierte großmaßstäbliche Kartierung des Jahazpur Mineraliengürtels durch ein MapReduce-Modell mit integrierter ELM-Methode. Die hochauflösende hyperspektrale Fernerkundung kann eine großmaßstäbliche Kartierung von reinen Spektren zusammen mit gestörten/gemischten Spektren von Mineralien innerhalb einer Szene liefern. Unter den "Pro-Pixel"-Methoden ist das maschinelle Lernen eine bekannte automatisierte Technik für die Datenwissenschaft, die am flexibelsten ist, um neue Spektren oder gestörte/gemischte Spektren von Mineralien als eine individuelle Kategorie zu kartieren. Da begrenzte Mineralproben oft nur teilweise die komplexe Mineralogie eines großen Standorts repräsentieren, muss eine verteilte Kartierung mit einer skalierbaren Methode durchgeführt werden, die auch mit einer kleineren Anzahl von Trainingsproben funktioniert. In diesem Zusammenhang stellen wir ein integriertes maschinelles Extrem-Lernverfahren (IELM) vor, das die reinen Spektren und die gestörten/gemischten Spektren jedes Oberflächentyps qualitativ kartiert. Diese Kartierung wurde in eine quantitative Analyse der Störungs-/Vermischungseigenschaften der reinen Spektren integriert. Die großmaßstäblicher Kartierung des mineralisierten Gürtels von Jahazpur wurde mit einem MapReduce-Modell mit der IELM-Methode unter Verwendung von AVIRIS-NG (Airborne Visible-Infrared Imaging Spectrometer-Next Generation) durchgeführt. Bei der Validierung erreicht die IELM-Methode eine Genauigkeit von 98,08 % bei AVIRIS-NG-Daten mit hohem Signal-Rausch-Verhältnis (SNR) und 96,54 % bei synthetischen Daten mit niedrigem SNR in Anwesenheit von 269 Trainingsproben. Die IELM-Methode zeigt bei der Bewertung eine bessere Wirksamkeit als ein Ansatz zur Anpassung der Spektralmerkmale. Die Analysen der gestörten und gemischten Spektren deuten darauf hin, dass ein additives spektrales Variabilitätsmodell und ein lineares Mischungsmodell für die vorliegenden Daten unserer Untersuchung geeignet sind. Diese analytischen Ergebnisse können für eine "Sub-Pixel"-Methode (z. B. spektrales Unmixing) weiter ausgebaut werden, um eine Anwendung wie Lithologie- oder Wirtsgesteinskartierung zu erreichen.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

Computer Code Availability

The algorithmic code includes the proposed integrated ELM method that have been implemented in platform of eclipse Java EE developer. The demo data are selected from the study area itself with dimension of 200 pixels \(\times\) 200 pixels. The implemented code is developed by Sukanta Roy (https://github.com/roysukanta/MineralMapping).

References

  • Acosta ICC, Khodadadzadeh M, Tusa L, Ghamisi P, Gloaguen R (2019) A machine learning framework for drill-core mineral mapping using hyperspectral and high-resolution mineralogical data fusion. IEEE J Sel Top Appl Earth Obs Remote Sens 12(12):4829–4842

    Article  Google Scholar 

  • Adams JB (1975) Interpretation of visible and near-infrared diffuse reflectance spectra of pyroxenes and other rock-forming minerals. Infrared and Raman spectroscopy of lunar and terrestrial minerals. Elsevier, Amsterdam, pp 91–116

    Chapter  Google Scholar 

  • Adep RN, Ramesh H et al (2017) Exhype: a tool for mineral classification using hyperspectral data. ISPRS J Photogramm Remote Sens 124:106–118

    Article  Google Scholar 

  • Asadzadeh S, de Souza Filho CR (2016) A review on spectral processing methods for geological remote sensing. Int J Appl Earth Obs Geoinf 47:69–90

    Google Scholar 

  • Banwell CN (1972) Fundamentals of molecular spectroscopy. McGraw-Hill, New York

  • Bhadra B, Pathak S, Karunakar G, Sharma J (2013) Aster data analysis for mineral potential mapping around Sawar-Malpura area, central Rajasthan. J Indian Soc Remote Sens 41(2):391–404

    Article  Google Scholar 

  • Bhadra B, Pathak S, Nanda D, Gupta A, Rao SS (2020) Spectral characteristics of talc and mineral abundance mapping in the Jahazpur belt of Rajasthan, India using Aviris-ng data. Int J Remote Sens 41(22):8757–8777

    Article  Google Scholar 

  • Bhattacharya S, Majumdar T, Rajawat A, Panigrahi M, Das P (2012) Utilization of hyperion data over dongargarh, india, for mapping altered/weathered and clay minerals along with field spectral measurements. Int J Remote Sens 33(17):5438–5450

    Article  Google Scholar 

  • Bhattacharya S, Dagar S, Pathak S (2017) A mineralogical appraisal on Jahazpur and adjoining areas of Rajasthan based on aviris-ng hyperspectral observations. Spectrum of India, ISRO, Ahmedabad, pp 32–33

    Google Scholar 

  • Bhattacharya S, Kumar H, Guha A, Dagar AK, Pathak S, Rani K, Mondal S, Kumar KV, Farrand W, Chatterjee S et al (2019a) Potential of airborne hyperspectral data for geo-exploration over parts of different geological/metallogenic provinces in India based on aviris-ng observations. Curr Sci 116(7):1143–1156

    Article  Google Scholar 

  • Bhattacharya BK, Green RO, Rao S, Saxena M, Sharma S, Kumar KA, Srinivasulu P, Sharma S, Dhar D, Bandyopadhyay S et al (2019b) An overview of aviris-ng airborne hyperspectral science campaign over India. Curr Sci 116:1082–1088

    Article  Google Scholar 

  • Bioucas-Dias JM, Plaza A, Dobigeon N, Parente M, Du Q, Gader P, Chanussot J (2012) Hyperspectral unmixing overview: geometrical, statistical, and sparse regression-based approaches. IEEE J Sel Top Appl Earth Obs Remote Sens 5(2):354–379

    Article  Google Scholar 

  • Borsoi RA, Imbiriba T, Bermudez JCM (2020) A data dependent multiscale model for hyperspectral unmixing with spectral variability. IEEE Trans Image Process 29:3638–3651

    Article  Google Scholar 

  • Carrino TA, Crósta AP, Toledo CLB, Silva AM (2018) Hyperspectral remote sensing applied to mineral exploration in southern Peru: a multiple data integration approach in the chapi chiara gold prospect. Int J Appl Earth Obs Geoinf 64:287–300

    Google Scholar 

  • Clark RN (1995) Reflectance spectra. Rock physics and phase relations: a handbook of physical constants. Springer, Berlin, pp 178–188

    Google Scholar 

  • Clark RN, Gallagher AJ, Swayze GA (1990) Material absorption band depth mapping of imaging spectrometer data using a complete band shape least-squares fit with library reference spectra. Proc Sec Airborne Vis Infrared Imaging Spectrom (AVIRIS) 90:176–186

    Google Scholar 

  • Clark RN et al (1999) Spectroscopy of rocks and minerals, and principles of spectroscopy. Man Remote Sens 3(3–58):2–2

    Google Scholar 

  • Clark RN, Swayze GA, Livo KE, Kokaly RF, Sutley SJ, Dalton JB, McDougal RR, Gent CA (2003) Imaging spectroscopy: earth and planetary remote sensing with the usgs tetracorder and expert systems. J Geophys Res. https://doi.org/10.1029/2002JE001847

    Article  Google Scholar 

  • Cogliati S, Sarti F, Chiarantini L, Cosi M, Lorusso R, Lopinto E, Miglietta F, Genesio L, Guanter L, Damm A et al (2021) The prisma imaging spectroscopy mission: overview and first performance analysis. Remote Sens Environ 262:112499

    Article  Google Scholar 

  • Crouvi O, Ben-Dor E, Beyth M, Avigad D, Amit R (2006) Quantitative mapping of arid alluvial fan surfaces using field spectrometer and hyperspectral remote sensing. Remote Sens Environ 104(1):103–117

    Article  Google Scholar 

  • Dey B, Das K, Dasgupta N, Bose S, Ghatak H (2016) Zircon u-pb shrimp dating of the Jahazpur granite and its implications on the stratigraphic status of the Hindoli-Jahazpur group. In: Annual General Meeting of the Geological Society of India, p 173

  • Drumetz L, Veganzones MA, Henrot S, Phlypo R, Chanussot J, Jutten C (2016) Blind hyperspectral unmixing using an extended linear mixing model to address spectral variability. IEEE Trans Image Process 25(8):3890–3905

    Article  Google Scholar 

  • Drumetz L, Chanussot J, Jutten C (2019) Spectral unmixing: a derivation of the extended linear mixing model from the Hapke model. IEEE Geosci Remote Sens Lett 17(11):1866–1870

    Article  Google Scholar 

  • Ducasse E, Adeline K, Briottet X, Hohmann A, Bourguignon A, Grandjean G (2020) Montmorillonite estimation in clay-quartz-calcite samples from laboratory swir imaging spectroscopy: a comparative study of spectral preprocessings and unmixing methods. Remote Sens 12(11):1723

    Article  Google Scholar 

  • Er MJ, Shao Z, Wang N (2014) A fast and effective extreme learning machine algorithm without tuning. In: 2014 International Joint Conference on Neural Networks (IJCNN), IEEE, pp 770–777

  • Esmaeili S, Tangestani MH, Tayebi MH (2020) Sub-pixel mapping of copper-and iron-bearing metamorphic rocks using aster data: A case study of Toutak and Surian complexes, Ne Shiraz, Iran. Natl Resour Res 29:2933–2948. https://doi.org/10.1007/s11053-020-09639-x

    Article  Google Scholar 

  • Fan C, Zhang P, Wang S, Hu B (2018) A study on classification of mineral pigments based on spectral angle mapper and decision tree. Int Conf Digit Image Process 10806:108065

    Google Scholar 

  • Feng J, Rivard B, Rogge D, Sánchez-Azofeifa A (2013) The longwave infrared (3–14 \(\mu\)m) spectral properties of rock encrusting lichens based on laboratory spectra and airborne sebass imagery. Remote Sens Environ 131:173–181

    Article  Google Scholar 

  • Gewali UB, Monteiro ST, Saber E (2018) Machine learning based hyperspectral image analysis: a survey. arXiv preprint arXiv:1802.08701

  • Götze C, Denk M, Riedel F, Gläßer C (2017) Interlaboratory comparison of spectrometric laboratory measurements of a chlorite rock sample. PFG J Photogramm Remote Sens Geoinf Sci 85(5):307–316

    Google Scholar 

  • Govil H, Tripathi MK, Diwan P, Guha S et al. (2018) Identification of iron oxides minerals in western Jahajpur region, India using aviris-ng hyperspectral remote sensing. Int Arch Photogramm Remote Sens Spat Inf Sci

  • Govil H, Tripathi MK, Diwan P et al (2020) Comparative evaluation of aviris-ng and hyperion hyperspectral image for talc mineral identification. Data management. Springer, Analytics and Innovation, Berlin, pp 95–101

    Google Scholar 

  • GSI (2011) Geology and mineral resources of rajasthan. Miscellaneous Publication No 30, Part 12, 3rd revised edition

  • Gupta RP (1991) Spectra of minerals and rocks. Remote sensing geology. Springer, Berlin, pp 19–34

    Chapter  Google Scholar 

  • Gürsoy Ö, Kaya Ş (2017) Detecting of lithological units by using terrestrial spectral data and remote sensing image. J Indian Soc Remote Sens 45(2):259–269

    Article  Google Scholar 

  • Hapke B (2012) Theory of reflectance and emittance spectroscopy. Cambridge University Press, Cambridge

    Google Scholar 

  • Hauff P (2008) An overview of vis-nir-swir field spectroscopy as applied to precious metals exploration. Spectr Int 80001:303–403

    Google Scholar 

  • Honty M, De Craen M (2012) Boom clay mineralogy–qualitative and quantitative aspects. SCK-CEN report ER-194

  • Hu B, Xu Y, Wan B, Wu X, Yi G (2018) Hydrothermally altered mineral mapping using synthetic application of sentinel-2a msi, aster and hyperion data in the Duolong area, Tibetan plateau, China. Ore Geol Rev 101:384–397

    Article  Google Scholar 

  • Hu B, Wan B, Xu Y, Tao L, Wu X, Qiu Q, Wu Y, Deng H (2019) Mapping hydrothermally altered minerals with ast_07xt, ast_05 and hyperion datasets using a voting-based extreme learning machine algorithm. Ore Geol Rev 114:103116

    Article  Google Scholar 

  • Huang GB, Zhu QY, Siew CK (2006) Extreme learning machine: theory and applications. Neurocomputing 70(1–3):489–501

    Article  Google Scholar 

  • Hunt GR (1977) Spectral signatures of particulate minerals in the visible and near infrared. Geophysics 42(3):501–513

    Article  Google Scholar 

  • Hussain SA, Tahir A, Khan JA, Salman A (2019) Pixel-based classification of hyperspectral images using convolutional neural networks. PFG J Photogramm Remote Sens Geoinf Sci 87(1–2):33–45

    Google Scholar 

  • Ibarrola-Ulzurrun E, Drumetz L, Marcello J, Gonzalo-Martin C, Chanussot J (2019) Hyperspectral classification through unmixing abundance maps addressing spectral variability. IEEE Trans Geosci Remote Sens 57(7):4775–4788

    Article  Google Scholar 

  • Jain R, Sharma RU (2018) Mapping of mineral zones using the spectral feature fitting method in Jahazpur belt Rajasthan, India. Internat Res J Eng Tech 5:562–567

    Google Scholar 

  • Kruse FA (2015) Integrated visible and near-infrared, shortwave infrared, and longwave infrared full-range hyperspectral data analysis for geologic mapping. J Appl Remote Sens 9(1):096005

    Article  Google Scholar 

  • Kumar C, Chatterjee S, Oommen T (2020a) Mapping hydrothermal alteration minerals using high-resolution aviris-ng hyperspectral data in the hutti-maski gold deposit area, india. Int J Remote Sens 41(2):794–812

    Article  Google Scholar 

  • Kumar C, Chatterjee S, Oommen T, Guha A (2020b) Automated lithological mapping by integrating spectral enhancement techniques and machine learning algorithms using aviris-ng hyperspectral data in gold-bearing granite-greenstone rocks in hutti, india. Int J Appl Earth Obs Geoinf 86:102006

    Google Scholar 

  • Lagat J (2009) Hydrothermal alteration mineralogy in geothermal fields with case examples from olkaria domes geothermal field, Kenya. Dipresentasikan dalam short course IV on exploration for geothermal resources

  • Leite EP, de Souza Filho CR (2009a) Artificial neural networks applied to mineral potential mapping for copper-gold mineralizations in the carajás mineral province, brazil. Geophys Prospect 57(6):1049–1065

    Article  Google Scholar 

  • Leite EP, de Souza Filho CR (2009b) Probabilistic neural networks applied to mineral potential mapping for platinum group elements in the Serra Leste region, Caajás mineral province, Brazil. Comput Geosci 35(3):675–687

    Article  Google Scholar 

  • Li M, Zang S, Zhang B, Li S, Wu C (2014) A review of remote sensing image classification techniques: the role of spatio-contextual information. Eur J Remote Sens 47(1):389–411

    Article  Google Scholar 

  • Low Y, Gonzalez J, Kyrola A, Bickson D, Guestrin C, Hellerstein JM (2012) Distributed graphlab: a framework for machine learning in the cloud. arXiv preprint arXiv:1204.6078

  • Luo W, Gao L, Zhang R, Marinoni A, Zhang B (2018) Bilinear normal mixing model for spectral unmixing. IET Image Proc 13(2):344–354

    Article  Google Scholar 

  • Maddams W (1980) The scope and limitations of curve fitting. Appl Spectrosc 34(3):245–267

    Article  Google Scholar 

  • Maitrey S, Jha C (2015) Mapreduce: simplified data analysis of big data. Proced Comput Sci 57:563–571

    Article  Google Scholar 

  • Maitrey S, Jha C (2015a) Handling big data efficiently by using map reduce technique. In: 2015 IEEE International Conference on Computational Intelligence and Communication Technology, IEEE, pp 703–708

  • McCoy JT, Auret L (2019) Machine learning applications in minerals processing: a review. Miner Eng 132:95–109

    Article  Google Scholar 

  • Mielke C, Rogass C, Boesche N, Segl K, Altenberger U (2016) Engeomap 2.0-automated hyperspectral mineral identification for the German enmap space mission. Remote Sens 8(2):127

    Article  Google Scholar 

  • Mielke C, Chabrillat S, Rogass C, Boesche NK, Guillaso S, Foerster S, Segl K, Guanter L (2018) Engeomap and ensomap: software interfaces for mineral and soil mapping under development in the frame of the enmap mission. In: IGARSS 2018-2018 IEEE International Geoscience and Remote Sensing Symposium, IEEE, pp 8369–8372

  • Mishra MK, Gupta A, John J, Shukla BP, Dennison P, Srivastava S, Kaushik NK, Misra A, Dhar D (2019) Retrieval of atmospheric parameters and data-processing algorithms for aviris-ng Indian campaign data. Curr Sci 116(7):1089–1100

    Article  Google Scholar 

  • NASA JPL (2015) ISRO-NASA AVIRIS–NG airborne flights over india sciene plan document for hyperspectral remote sensing

  • Noori L, Pour AB, Askari G, Taghipour N, Pradhan B, Lee CW, Honarmand M (2019) Comparison of different algorithms to map hydrothermal alteration zones using aster remote sensing data for polymetallic vein-type ore exploration: Toroud-chahshirin magmatic belt (tcmb), north Iran. Remote Sens 11(5):495

    Article  Google Scholar 

  • Ono S, Shanks WC III, Rouxel OJ, Rumble D (2007) S-33 constraints on the seawater sulfate contribution in modern seafloor hydrothermal vent sulfides. Geochim Cosmochim Acta 71(5):1170–1182

    Article  Google Scholar 

  • Othman AA, Gloaguen R (2017) Integration of spectral, spatial and morphometric data into lithological mapping: a comparison of different machine learning algorithms in the Kurdistan region, ne Iraq. J Asian Earth Sci 146:90–102

    Article  Google Scholar 

  • Plaza AJ (2009) Special issue on architectures and techniques for real-time processing of remotely sensed images. J Real-Time Image Proc 4(3):191–193

    Article  Google Scholar 

  • Poppiel RR, Demattê JAM, Rosin NA, Campos LR, Tayebi M, Bonfatti BR, Ayoubi S, Tajik S, Afshar FA, Jafari A et al (2021) High resolution middle eastern soil attributes mapping via open data and cloud computing. Geoderma 385:114890

    Article  Google Scholar 

  • Porwal A, Yu L (2010) Svm-based base-metal prospectivity modeling of the Aravalli orogen, northwestern India. In: EGU General Assembly Conference Abstracts, p 7542

  • Ramakrishnan D, Bharti R (2015) Hyperspectral remote sensing and geological applications. Curr Sci 108:879–891

    Google Scholar 

  • Ramprasad R, Batra R, Pilania G, Mannodi-Kanakkithodi A, Kim C (2017) Machine learning in materials informatics: recent applications and prospects. npj Comput Mater 3(1):1–13

    Article  Google Scholar 

  • Rani N, Mandla VR, Singh T (2017) Spatial distribution of altered minerals in the gadag schist belt (gsb) of Karnataka, southern India using hyperspectral remote sensing data. Geocarto Int 32(3):225–237

    Article  Google Scholar 

  • Ranjan S, Sarvaiya JN, Patel JN (2019) Integrating spectral and spatial features for hyperspectral image classification with a modified composite kernel framework. PFG J Photogramm Remote Sens Geoinf Sci 87(5–6):275–296

    Google Scholar 

  • Rao DA, Guha A (2018) Potential utility of spectral angle mapper and spectral information divergence methods for mapping lower vindhyan rocks and their accuracy assessment with respect to conventional lithological map in Jharkhand, India. J Indian Soc Remote Sens 46(5):737–747

    Article  Google Scholar 

  • Rigol-Sanchez J, Chica-Olmo M, Abarca-Hernandez F (2003) Artificial neural networks as a tool for mineral potential mapping with gis. Int J Remote Sens 24(5):1151–1156

    Article  Google Scholar 

  • Roy S, Gupta S, Omkar S (2017) Case study on: scalability of preprocessing procedure of remote sensing in hadoop. Proced Comput Sci 108:1672–1681

    Article  Google Scholar 

  • Roy S, Bhattacharya S, Omkar SN (2020) Alternating direction method-based endmember extraction for a distributed fraction cover mapping of mineralogy at Jahazpur, India. J Appl Remote Sens 14(4):044510

    Article  Google Scholar 

  • Şahin M (2013) Comparison of modelling ann and elm to estimate solar radiation over turkey using noaa satellite data. Int J Remote Sens 34(21):7508–7533

    Article  Google Scholar 

  • Salehi T, Tangestani MH (2020) Per-pixel analysis of aster data for porphyry copper hydrothermal alteration mapping: a case study of ne Isfahan, Iran. Remote Sens Appl 20:100377

    Google Scholar 

  • Shanks III WP (2012) Hydrothermal alteration. Volcanic massive sulphide occurrence model

  • Sovilj D, Björk KM, Lendasse A (2016) Comparison of combining methods using extreme learning machines under small sample scenario. Neurocomputing 174:4–17

    Article  Google Scholar 

  • Sun T, Chen F, Zhong L, Liu W, Wang Y (2019) Gis-based mineral prospectivity mapping using machine learning methods: a case study from tongling ore district, eastern China. Ore Geol Rev 109:26–49

    Article  Google Scholar 

  • Sun T, Li H, Wu K, Chen F, Zhu Z, Hu Z (2020) Data-driven predictive modelling of mineral prospectivity using machine learning and deep learning methods: a case study from southern Jiangxi province, China. Minerals 10(2):102

    Article  Google Scholar 

  • Szlam A, Guo Z, Osher S (2010) A split bregman method for non-negative sparsity penalized least squares with applications to hyperspectral demixing. In: 2010 IEEE International Conference on Image Processing, IEEE, pp 1917–1920

  • Thouvenin PA, Dobigeon N, Tourneret JY (2015) Hyperspectral unmixing with spectral variability using a perturbed linear mixing model. IEEE Trans Signal Process 64(2):525–538

    Article  Google Scholar 

  • Traylen A, Caccetta P, Guo Y, Berman M, Lau IC (2018) Endmember search and proportion estimates from airborne hyperspectral surveys. Int J Remote Sens 39(2):525–543

    Article  Google Scholar 

  • Tripathi MK, Govil H (2019) Evaluation of aviris-ng hyperspectral images for mineral identification and mapping. Heliyon 5(11):e02931

    Article  Google Scholar 

  • Tripathi MK, Govil H, Chattoraj S (2020) Identification of hydrothermal altered/weathered and clay minerals through airborne aviris-ng hyperspectral data in Jahajpur, India. Heliyon 6(2):e03487

    Article  Google Scholar 

  • Van Der Meer F (2004) Analysis of spectral absorption features in hyperspectral imagery. Int J Appl Earth Obs Geoinf 5(1):55–68

    Google Scholar 

  • Van der Meer FD, Van der Werff HM, Van Ruitenbeek FJ, Hecker CA, Bakker WH, Noomen MF, Van Der Meijde M, Carranza EJM, De Smeth JB, Woldai T (2012) Multi-and hyperspectral geologic remote sensing: a review. Int J Appl Earth Obs Geoinf 14(1):112–128

    Google Scholar 

  • White T (2012) Hadoop: the definitive guide. OReilly Media Inc, Newton

    Google Scholar 

  • Xu F, Cao X, Chen X, Somers B (2019) Mapping impervious surface fractions using automated fisher transformed unmixing. Remote Sens Environ 232:111311

    Article  Google Scholar 

  • Yang K, Huntington JF, Browne PR, Ma C (2000) An infrared spectral reflectance study of hydrothermal alteration minerals from the te mihi sector of the wairakei geothermal system, New Zealand. Geothermics 29(3):377–392

    Article  Google Scholar 

  • Zhou Y, Rangarajan A, Gader PD (2018) A gaussian mixture model representation of endmember variability in hyperspectral unmixing. IEEE Trans Image Process 27(5):2242–2256

    Article  Google Scholar 

  • Zhu F, Honeine P, Chen J (2020) Pixel-wise linear/nonlinear nonnegative matrix factorization for unmixing of hyperspectral data. In: ICASSP 2020-2020 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), IEEE, pp 4737–4741

Download references

Acknowledgements

We would like to thank the whole team of AVIRIS-NG Science Campaign of SAC, Ahmedabad, ISRO, India for sharing their expertise and field knowledge in our study. We also would like to thank the anonymous two reviewers for their incisive comments and suggestions.

Author information

Authors and Affiliations

Authors

Contributions

SR conceived of the presented idea to develop the automation methodology and performed the data analysis. SB provided the authentic data of remote sensing and contributed the knowledge of in situ investigation to validate the science from the findings of our study. SNO supervised the flow of our presented work. All the authors discussed to finalise the manuscript.

Corresponding author

Correspondence to Sukanta Roy.

Ethics declarations

Conflict of Interest

There is no conflict of interest

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Roy, S., Bhattacharya, S. & Omkar, S.N. Automated Large-Scale Mapping of the Jahazpur Mineralised Belt by a MapReduce Model with an Integrated ELM Method. PFG 90, 191–209 (2022). https://doi.org/10.1007/s41064-021-00188-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s41064-021-00188-3

Keywords

Navigation