Skip to main content

Advertisement

Log in

Recent Progress in Indacenodithiophene-Based Acceptor Materials for Non-Fullerene Organic Solar Cells

  • Review
  • Published:
Topics in Current Chemistry Aims and scope Submit manuscript

Abstract

Domesticating solar energy by exploiting photovoltaic technology has become a quintessential strategy for future global energy production. Since 2015, non-fullerene organic solar cells (NF-OSC) have attracted a great deal of attention owing to the marvellous properties of non-fullerene acceptors (NFA) such as structural versability, broad absorption, suitable energy levels, tunable charge transport and morphology, leading to remarkable accomplishments in power conversion efficiency (PCE) from 1% to nearly 20%. One class of materials is provided by the fused ring aromatic indacenodithiophene (IDT) and its derivatives, which are emerging continuously as promising next-generation building blocks to construct high performance photovoltaic materials. Encouraging PCEs of more than 15% have been achieved in their binary NF-OSCs, while careful device engineering and proper amalgamation of a third component have led to PCEs of almost 18% in ternary devices. This review surveys recent developments in the area of IDT-based materials for photovoltaic applications. Different strategies to develop efficient IDT-based NFA and factors influencing the bandgaps, molecular energy levels, charge transport properties, and film morphologies, as well as the photovoltaic performance of these materials, are discussed.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Chart 1
Fig. 1
Fig. 2

Reproduced under the Creative Commons Attribution License 3.0 of Ref. [29]

Chart 2
Chart 3
Fig. 3

Reproduced with the permission of Ref. [45]. Copyright permission Wiley 2019

Fig. 4

Reproduced with the permission of Refs [46] and [48]

Chart 4
Fig. 5

Reproduced with the Permission of Ref. [63]

Chart 5
Fig. 6

Reproduced with the permission of Ref. [68]

Fig. 7

Reproduced with the permission of Ref. [72]

Fig. 8

Reproduced with the permission of Ref. [73]

Chart 6
Fig. 9

Reproduced with the permission of Ref. [77]

Chart 7
Fig. 10
Fig. 11

Reproduced with the permission of Ref. [88]

Chart 8

Similar content being viewed by others

References

  1. BP Energy Outlook 2030, https://www.bp.com/content/dam/bp/business-sites/en/global/corporate/pdfs/energy-economics/energy-outlook/bp-energy-outlook-2013.pdf.

  2. Dincer I (2000) Renewable energy and sustainable development: a crucial review. Renew Sustain Energy Rev 4:157. https://doi.org/10.1016/S1364-0321(99)00011-8

    Article  Google Scholar 

  3. Weatherhead EC, Andersen SB (2006) The search for signs of recovery of the ozone layer. Nature 441:39. https://doi.org/10.1038/nature04746

    Article  CAS  PubMed  Google Scholar 

  4. Jacobson MZ, Delucchi MA, Bauer ZAF, Goodman SC, Chapman WE, Cameron MA, Bozonnat C, Chobadi L, Clonts HA, Enevoldsen P, Erwin JR, Fobi SN, Goldstrom OK, Hennessy EM, Liu J, Lo J, Meyer CB, Morris SB, Moy KR, O’Neill PL, Petkov I, Redfern S, Schucker R, Sontag MA, Wang J, Weiner E, Yachanin AS (2017) 100% clean and renewable wind, water, and sunlight all-sector energy roadmaps for 139 countries of the world. Joule 1:108. https://doi.org/10.1016/j.joule.2017.07.005

    Article  Google Scholar 

  5. Smil V (2010) Energy transitions: history, requirements, prospects. ABC-CLIO

  6. Jean J, Brown PR, Jaffe RL, Buonassisi T, Bulović V (2015) Pathways for solar photovoltaics. Energy Environ Sci 8:1200. https://doi.org/10.1039/C4EE04073B

    Article  CAS  Google Scholar 

  7. Lewis NS (2007) Toward cost-effective solar energy use. Science 315:798. https://doi.org/10.1126/science.1137014

    Article  CAS  PubMed  Google Scholar 

  8. Ilmi R, Haque A, Khan MS (2018) High efficiency small molecule-based donor materials for organic solar cells. Org Electron 58:53. https://doi.org/10.1016/j.orgel.2018.03.048

    Article  CAS  Google Scholar 

  9. Al-Busaidi IJ, Haque A, Al-Balushi AR, Rather JA, Munam A, Ilmi R, Raithby PR, Zhang Y, Fu Y, Xie Z, Chen S, Islam SM, Wong W-Y, Skelton JM, Khan MS (2021) Synthesis, characterization, and optoelectronic properties of phenothiazine-based organic co-poly-ynes. New J Chem 45:15082. https://doi.org/10.1039/D1NJ00925G

    Article  CAS  Google Scholar 

  10. Green MA, Hishikawa Y, Dunlop ED, Levi DH, Hohl-Ebinger J, Ho-Baillie AWY (2018) Solar cell efficiency tables (version 51). Prog Photovolt Res Appl 26:3. https://doi.org/10.1002/pip.2978

    Article  Google Scholar 

  11. Lungenschmied C, Dennler G, Neugebauer H, Sariciftci SN, Glatthaar M, Meyer T, Meyer A (2007) Flexible, long-lived, large-area, organic solar cells. Sol Energy Mater Sol Cells 91:379. https://doi.org/10.1016/j.solmat.2006.10.013

    Article  CAS  Google Scholar 

  12. Tang CW (1986) Two-layer organic photovoltaic cell. Appl Phys Lett 48:183. https://doi.org/10.1063/1.96937

    Article  CAS  Google Scholar 

  13. Cui Y, Yao H, Zhang J, Xian K, Zhang T, Hong L, Wang Y, Xu Y, Ma K, An C, He C, Wei Z, Gao F, Hou J (2020) Single-junction organic photovoltaic cells with approaching 18% efficiency. Adv Mater 32:1908205. https://doi.org/10.1002/adma.201908205

    Article  CAS  Google Scholar 

  14. He Y, Li Y (2011) Fullerene derivative acceptors for high performance polymer solar cells. Phys Chem Chem Phys 13:1970. https://doi.org/10.1039/C0CP01178A

    Article  CAS  PubMed  Google Scholar 

  15. Liu T, Troisi A (2013) What makes fullerene acceptors special as electron acceptors in organic solar cells and how to replace them. Adv Mater 25:1038. https://doi.org/10.1002/adma.201203486

    Article  CAS  PubMed  Google Scholar 

  16. Cui C, Li Y, Li Y (2017) Fullerene derivatives for the applications as acceptor and cathode buffer layer materials for organic and perovskite solar cells. Adv Energy Mater 7:1601251. https://doi.org/10.1002/aenm.201601251

    Article  CAS  Google Scholar 

  17. Schwenn PE, Gui K, Nardes AM, Krueger KB, Lee KH, Mutkins K, Rubinstein-Dunlop H, Shaw PE, Kopidakis N, Burn PL, Meredith P (2011) A small molecule non-fullerene electron acceptor for organic solar cells. Adv Energy Mater 1:73. https://doi.org/10.1002/aenm.201000024

    Article  CAS  Google Scholar 

  18. Brunetti FG, Gong X, Tong M, Heeger AJ, Wudl F (2010) Strain and Hückel aromaticity: driving forces for a promising new generation of electron acceptors in organic electronics. Angew Chem Int Ed 49:532. https://doi.org/10.1002/anie.200905117

    Article  CAS  Google Scholar 

  19. Yan C, Barlow S, Wang Z, Yan H, Jen AKY, Marder SR, Zhan X (2018) Non-fullerene acceptors for organic solar cells. Nat Rev Mater 3:18003. https://doi.org/10.1038/natrevmats.2018.3

    Article  CAS  Google Scholar 

  20. Duan L, Elumalai NK, Zhang Y, Uddin A (2019) Progress in non-fullerene acceptor based organic solar cells. Sol Energy Mater Sol Cells 193:22. https://doi.org/10.1016/j.solmat.2018.12.033

    Article  CAS  Google Scholar 

  21. Sharma V, Koenig JDB, Welch GC (2021) Perylene diimide based non-fullerene acceptors: top performers and an emerging class featuring N-annulation. J Mater Chem A 9:6775. https://doi.org/10.1039/D0TA11197J

    Article  CAS  Google Scholar 

  22. Luo Z, Liu T, Chen Z, Xiao Y, Zhang G, Huo L, Zhong C, Lu X, Yan H, Sun Y, Yang C (2019) Isomerization of perylene diimide based acceptors enabling high-performance nonfullerene organic solar cells with excellent fill factor. Adv Sci (Weinheim, Ger) 6:1802065. https://doi.org/10.1002/advs.201802065

    Article  CAS  Google Scholar 

  23. Ding K, Shan T, Xu J, Li M, Wang Y, Zhang Y, Xie Z, Ma Z, Liu F, Zhong H (2020) A perylene diimide-containing acceptor enables high fill factor in organic solar cells. Chem Commun 56:11433. https://doi.org/10.1039/D0CC04297H

    Article  CAS  Google Scholar 

  24. Lin Y, Zhao F, He Q, Huo L, Wu Y, Parker TC, Ma W, Sun Y, Wang C, Zhu D, Heeger AJ, Marder SR, Zhan X (2016) High-performance electron acceptor with thienyl side chains for organic photovoltaics. J Am Chem Soc 138:4955. https://doi.org/10.1021/jacs.6b02004

    Article  CAS  PubMed  Google Scholar 

  25. Hu H, Li Y, Zhang J, Peng Z, Ma L-k, Xin J, Huang J, Ma T, Jiang K, Zhang G, Ma W, Ade H, Yan H (2018) Effect of ring-fusion on miscibility and domain purity: key factors determining the performance of PDI-based nonfullerene organic solar cells. Adv Energy Mater 8:1800234. https://doi.org/10.1002/aenm.201800234

    Article  CAS  Google Scholar 

  26. Feng L, Yuan J, Zhang Z, Peng H, Zhang Z-G, Xu S, Liu Y, Li Y, Zou Y (2017) Thieno[3,2-b]pyrrolo-fused pentacyclic benzotriazole-based acceptor for efficient organic photovoltaics. ACS Appl Mater Interfaces 9:31985. https://doi.org/10.1021/acsami.7b10995

    Article  CAS  PubMed  Google Scholar 

  27. Ye L, Xie Y, Xiao Y, Song J, Li C, Fu H, Weng K, Lu X, Tan S, Sun Y (2019) Asymmetric fused-ring electron acceptor with two distinct terminal groups for efficient organic solar cells. J Mater Chem A 7:8055. https://doi.org/10.1039/C9TA01285K

    Article  CAS  Google Scholar 

  28. Zhang M, Zhu L, Zhou G, Hao T, Qiu C, Zhao Z, Hu Q, Larson BW, Zhu H, Ma Z, Tang Z, Feng W, Zhang Y, Russell TP, Liu F (2021) Single-layered organic photovoltaics with double cascading charge transport pathways: 18% efficiencies. Nat Commun 12:309. https://doi.org/10.1038/s41467-020-20580-8

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Islam MA, Kassim NM, Alkahtani AA, Amin N (2021) Assessing the impact of spectral irradiance on the performance of different photovoltaic technologies. https://doi.org/10.5772/intechopen.96697

  30. Bai H, Wang Y, Cheng P, Wang J, Wu Y, Hou J, Zhan X (2015) An electron acceptor based on indacenodithiophene and 1,1-dicyanomethylene-3-indanone for fullerene-free organic solar cells. J Mater Chem A 3:1910. https://doi.org/10.1039/C4TA06004K

    Article  CAS  Google Scholar 

  31. Lin Y, Wang J, Zhang Z-G, Bai H, Li Y, Zhu D, Zhan X (2015) An electron acceptor challenging fullerenes for efficient polymer solar cells. Adv Mater 27:1170. https://doi.org/10.1002/adma.201404317

    Article  CAS  PubMed  Google Scholar 

  32. Lin Y, Zhang Z-G, Bai H, Wang J, Yao Y, Li Y, Zhu D, Zhan X (2015) High-performance fullerene-free polymer solar cells with 6.31% efficiency. Energy Environ Sci 8:610. https://doi.org/10.1039/C4EE03424D

    Article  CAS  Google Scholar 

  33. Zhang Z, Wang Y, Sun C, Liu Z, Wang H, Xue L, Zhang ZG (2021) Recent progress in small-molecule donors for non-fullerene all-small-molecule organic solar cells. Nano Sel. https://doi.org/10.1002/nano.202100181

    Article  Google Scholar 

  34. Xu X, Yu L, Peng Q (2021) Recent advances in wide bandgap polymer donors and their applications in organic solar cells. Chin J Chem 39:243. https://doi.org/10.1002/cjoc.202000451

    Article  CAS  Google Scholar 

  35. He K, Kumar P, Yuan Y, Li Y (2021) Wide bandgap polymer donors for high efficiency non-fullerene acceptor based organic solar cells. Mater Adv 2:115. https://doi.org/10.1039/D0MA00790K

    Article  CAS  Google Scholar 

  36. Zhang M, Ma X, Zhang H, Zhu L, Xu L, Zhang F, Tsang C-S, Lee LYS, Woo HY, He Z, Wong W-Y (2022) Metallated terpolymer donors with strongly absorbing iridium complex enables polymer solar cells with 16.71% efficiency. Chem Eng J 430:132832. https://doi.org/10.1016/j.cej.2021.132832

    Article  CAS  Google Scholar 

  37. Fu H, Wang Z, Sun Y (2019) Polymer donors for high-performance non-fullerene organic solar cells. Angew Chem Int Ed 58:4442. https://doi.org/10.1002/anie.201806291

    Article  CAS  Google Scholar 

  38. Xu X, Feng K, Bi Z, Ma W, Zhang G, Peng Q (2019) Single-junction polymer solar cells with 16.35% efficiency enabled by a Platinum(II) complexation strategy. Adv Mater 31:1901872. https://doi.org/10.1002/adma.201901872

    Article  CAS  Google Scholar 

  39. Beaujuge PM, Fréchet JMJ (2011) Molecular design and ordering effects in π-functional materials for transistor and solar cell applications. J Am Chem Soc 133:20009. https://doi.org/10.1021/ja2073643

    Article  CAS  PubMed  Google Scholar 

  40. Wang Y, Zhang Y, Qiu N, Feng H, Gao H, Kan B, Ma Y, Li C, Wan X, Chen Y (2018) A Halogenation strategy for over 12% efficiency nonfullerene organic solar cells. Adv Energy Mater 8:1702870. https://doi.org/10.1002/aenm.201702870

    Article  CAS  Google Scholar 

  41. Zheng Y-Q, Wang Z, Dou J-H, Zhang S-D, Luo X-Y, Yao Z-F, Wang J-Y, Pei J (2015) Effect of halogenation in isoindigo-based polymers on the phase separation and molecular orientation of bulk heterojunction solar cells. Macromolecules 48:5570. https://doi.org/10.1021/acs.macromol.5b01074

    Article  CAS  Google Scholar 

  42. Tang ML, Oh JH, Reichardt AD, Bao Z (2009) Chlorination: a general route toward electron transport in organic semiconductors. J Am Chem Soc 131:3733. https://doi.org/10.1021/ja809045s

    Article  CAS  PubMed  Google Scholar 

  43. Reichenbächer K, Süss HI, Hulliger J (2005) Fluorine in crystal engineering—“the little atom that could.” Chem Soc Rev 34:22. https://doi.org/10.1039/B406892K

    Article  PubMed  Google Scholar 

  44. Zhang Y, Yao H, Zhang S, Qin Y, Zhang J, Yang L, Li W, Wei Z, Gao F, Hou J (2018) Fluorination vs. chlorination: a case study on high performance organic photovoltaic materials. Sci China Chem 61:1328. https://doi.org/10.1007/s11426-018-9260-2

    Article  CAS  Google Scholar 

  45. Li C, Song J, Ye L, Koh C, Weng K, Fu H, Cai Y, Xie Y, Wei D, Woo HY, Sun Y (2019) High-performance eight-membered indacenodithiophene-based asymmetric A-D-A type non-fullerene acceptors. Solar RRL 3:1800246. https://doi.org/10.1002/solr.201800246

    Article  CAS  Google Scholar 

  46. Wu F, Zhong L, Hu H, Li Y, Zhang Z, Li Y, Zhang Z-G, Ade H, Jiang Z-Q, Liao L-S (2019) A decacyclic indacenodithiophene-based non-fullerene electron acceptor with meta-alkyl-phenyl substitutions for polymer solar cells. J Mater Chem A 7:4063. https://doi.org/10.1039/C8TA11972D

    Article  CAS  Google Scholar 

  47. Li Y, Liu X, Wu F-P, Zhou Y, Jiang Z-Q, Song B, Xia Y, Zhang Z-G, Gao F, Inganäs O, Li Y, Liao L-S (2016) Non-fullerene acceptor with low energy loss and high external quantum efficiency: towards high performance polymer solar cells. J Mater Chem A 4:5890. https://doi.org/10.1039/C6TA00612D

    Article  CAS  Google Scholar 

  48. Xia T, Li C, Ryu HS, Guo J, Min J, Woo HY, Sun Y (2020) Efficient fused-ring extension of A-D-A-type non-fullerene acceptors by a symmetric replicating core unit strategy. Chem Eur J 26:12411. https://doi.org/10.1002/chem.202000889

    Article  CAS  PubMed  Google Scholar 

  49. Liu S, Zhao B, Cong Z, Cheng Q, Wang W, Pan H, Liu J, Wu H, Gao C (2020) Influences of the terminal groups on the performances of asymmetric small molecule acceptors-based polymer solar cells. Dyes Pigm 178:108388. https://doi.org/10.1016/j.dyepig.2020.108388

    Article  CAS  Google Scholar 

  50. Zhao W, Li S, Yao H, Zhang S, Zhang Y, Yang B, Hou J (2017) Molecular optimization enables over 13% efficiency in organic solar cells. J Am Chem Soc 139:7148. https://doi.org/10.1021/jacs.7b02677

    Article  CAS  PubMed  Google Scholar 

  51. Fan Q, Su W, Zhang M, Wu J, Jiang Y, Guo X, Liu F, Russell TP, Zhang M, Li Y (2019) Synergistic effects of side-chain engineering and fluorination on small molecule acceptors to simultaneously broaden spectral response and minimize voltage loss for 13.8% efficiency organic solar cells. Solar RRL 3:1900169. https://doi.org/10.1002/solr.201900169

    Article  CAS  Google Scholar 

  52. Zhang J, Li Y, Peng Z, Bai F, Ma L-K, Ade H, Li Z, Yan H (2020) Near-infrared electron acceptors with fused nonacyclic molecular backbones for nonfullerene organic solar cells. Mater Chem Front 4:1729. https://doi.org/10.1039/C9QM00754G

    Article  CAS  Google Scholar 

  53. Xia T, Li C, Ryu HS, Sun X, Woo HY, Sun Y (2020) Asymmetrically alkyl-substituted wide-bandgap nonfullerene acceptor for organic solar cells. Solar RRL 4:2000061. https://doi.org/10.1002/solr.202000061

    Article  CAS  Google Scholar 

  54. Li X, Xu Z, Guo X, Fan Q, Zhang M, Li Y (2019) Synthesis and photovoltaic properties of a small molecule acceptor with thienylenevinylene thiophene as π bridge. Dyes Pigm 160:227. https://doi.org/10.1016/j.dyepig.2018.08.009

    Article  CAS  Google Scholar 

  55. Liang J, Yin P, Zheng T, Wang G, Zeng X, Cui C, Shen P (2019) Conjugated side-chain optimization of indacenodithiophene-based nonfullerene acceptors for efficient polymer solar cells. J Mater Chem C 7:10028. https://doi.org/10.1039/C9TC02237F

    Article  CAS  Google Scholar 

  56. Zhang Z, Wang H, Yu J, Sun R, Xu J, Yang L, Geng R, Cao J, Du F, Min J, Liu F, Tang W (2020) Modification on the indacenodithieno[3,2-b]thiophene core to achieve higher current and reduced energy loss for nonfullerene solar cells. Chem Mater 32:1297. https://doi.org/10.1021/acs.chemmater.9b04911

    Article  CAS  Google Scholar 

  57. Zhang Z, Guang S, Yu J, Wang H, Cao J, Du F, Wang X, Tang W (2020) Over 15.5% efficiency organic solar cells with triple sidechain engineered ITIC. Sci Bull 65:1533. https://doi.org/10.1016/j.scib.2020.05.022

    Article  CAS  Google Scholar 

  58. Li S, Li C-Z, Shi M, Chen H (2020) New phase for organic solar cell research: emergence of Y-series electron acceptors and their perspectives. ACS Energy Lett 5:1554. https://doi.org/10.1021/acsenergylett.0c00537

    Article  CAS  Google Scholar 

  59. Deng M, Xu X, Yu L, Li R, Peng Q (2020) Fused ring non-fullerene acceptors with benzothiophene dioxide end groups and their side chain effect investigations. Dyes Pigm 180:108452. https://doi.org/10.1016/j.dyepig.2020.108452

    Article  CAS  Google Scholar 

  60. Li C, Xia T, Song J, Fu H, Ryu HS, Weng K, Ye L, Woo HY, Sun Y (2019) Asymmetric selenophene-based non-fullerene acceptors for high-performance organic solar cells. J Mater Chem A 7:1435. https://doi.org/10.1039/C8TA11197A

    Article  CAS  Google Scholar 

  61. Liu K-K, Xu X, Wang J-L, Zhang C, Ge G-Y, Zhuang F-D, Zhang H-J, Yang C, Peng Q, Pei J (2019) Achieving high-performance non-halogenated nonfullerene acceptor-based organic solar cells with 13.7% efficiency via a synergistic strategy of an indacenodithieno[3,2-b]selenophene core unit and non-halogenated thiophene-based terminal group. J Mater Chem A 7:24389. https://doi.org/10.1039/C9TA08328F

    Article  CAS  Google Scholar 

  62. Liu S, Zhao B, Cong Z, Wang W, Cheng Q, Liu J, Wu H, Gao C (2021) Performance of asymmetric non-fullerene acceptors containing the 4,4,9,9-tetramethyl-4,9-dihydroselenopheno[2′,3′:5,6]-s-indaceno[1,2-b]thiophene core. Dyes Pigm 186:108988. https://doi.org/10.1016/j.dyepig.2020.108988

    Article  CAS  Google Scholar 

  63. Ge G-Y, Xiong W, Liu K-K, Ryu HS, Wan S-S, Liu B, Mahmood A, Bai H-R, Wang J-F, Wang Z, Woo HY, Sun Y, Wang J-L (2021) Synergistic effect of the selenophene-containing central core and the regioisomeric monochlorinated terminals on the molecular packing, crystallinity, film morphology, and photovoltaic performance of selenophene-based nonfullerene acceptors. J Mater Chem C 9:1923. https://doi.org/10.1039/D0TC05261B

    Article  CAS  Google Scholar 

  64. Zhang X, Steckler TT, Dasari RR, Ohira S, Potscavage WJ, Tiwari SP, Coppée S, Ellinger S, Barlow S, Brédas J-L, Kippelen B, Reynolds JR, Marder SR (2010) Dithienopyrrole-based donor–acceptor copolymers: low band-gap materials for charge transport, photovoltaics and electrochromism. J Mater Chem 20:123. https://doi.org/10.1039/B915940A

    Article  Google Scholar 

  65. Zhang Y, Zou J, Yip H-L, Sun Y, Davies JA, Chen K-S, Acton O, Jen AKY (2011) Conjugated polymers based on C, Si and N-bridged dithiophene and thienopyrroledione units: synthesis, field-effect transistors and bulk heterojunction polymer solar cells. J Mater Chem 21:3895. https://doi.org/10.1039/C0JM03927F

    Article  CAS  Google Scholar 

  66. Sun J, Ma X, Zhang Z, Yu J, Zhou J, Yin X, Yang L, Geng R, Zhu R, Zhang F, Tang W (2018) Dithieno[3,2-b:2′,3′-d]pyrrol fused nonfullerene acceptors enabling over 13% efficiency for organic solar cells. Adv Mater 30:1707150. https://doi.org/10.1002/adma.201707150

    Article  CAS  Google Scholar 

  67. Cao J, Qu S, Yu J, Zhang Z, Geng R, Yang L, Wang H, Du F, Tang W (2020) 13.76% efficiency nonfullerene solar cells enabled by selenophene integrated dithieno[3,2-b:2′,3′-d]pyrrole asymmetric acceptors. Mater Chem Front 4:924. https://doi.org/10.1039/C9QM00775J

    Article  CAS  Google Scholar 

  68. Geng R, Song X, Feng H, Yu J, Zhang M, Gasparini N, Zhang Z, Liu F, Baran D, Tang W (2019) Nonfullerene acceptor for organic solar cells with chlorination on dithieno[3,2-b:2′,3′-d]pyrrol fused-ring. ACS Energy Lett 4:763. https://doi.org/10.1021/acsenergylett.9b00147

    Article  CAS  Google Scholar 

  69. Feng H, Song X, Zhang M, Yu J, Zhang Z, Geng R, Yang L, Liu F, Baran D, Tang W (2019) Side chain engineering on dithieno[3,2-b:2,3-d]pyrrol fused electron acceptors for efficient organic solar cells. Mater Chem Front 3:702. https://doi.org/10.1039/C8QM00669E

    Article  CAS  Google Scholar 

  70. Li G, Li D, Ma R, Liu T, Luo Z, Cui G, Tong L, Zhang M, Wang Z, Liu F, Xu L, Yan H, Tang B (2020) Efficient modulation of end groups for the asymmetric small molecule acceptors enabling organic solar cells with over 15% efficiency. J Mater Chem A 8:5927. https://doi.org/10.1039/D0TA01032D

    Article  CAS  Google Scholar 

  71. Yang L, Song X, Yu J, Wang H, Zhang Z, Geng R, Cao J, Baran D, Tang W (2019) Tuning of the conformation of asymmetric nonfullerene acceptors for efficient organic solar cells. J Mater Chem A 7:22279. https://doi.org/10.1039/C9TA07634D

    Article  CAS  Google Scholar 

  72. Guo Q, Ma R, Hu J, Wang Z, Sun H, Dong X, Luo Z, Liu T, Guo X, Guo X, Yan H, Liu F, Zhang M (2020) Over 15% efficiency polymer solar cells enabled by conformation tuning of newly designed asymmetric small-molecule acceptors. Adv Funct Mater 30:2000383. https://doi.org/10.1002/adfm.202000383

    Article  CAS  Google Scholar 

  73. Cao J, Wang H, Qu S, Yu J, Yang L, Zhang Z, Du F, Tang W (2020) 2D side-chain engineered asymmetric acceptors enabling over 14% efficiency and 75% fill factor stable organic solar cells. Adv Funct Mater 30:2006141. https://doi.org/10.1002/adfm.202006141

    Article  CAS  Google Scholar 

  74. Gao J, Wang J, Xu C, Hu Z, Ma X, Zhang X, Niu L, Zhang J, Zhang F (2020) A critical review on efficient thick-film organic solar cells. Solar RRL 4:2000364. https://doi.org/10.1002/solr.202000364

    Article  CAS  Google Scholar 

  75. Feng S, Ce Z, Liu Y, Bi Z, Zhang Z, Xu X, Ma W, Bo Z (2017) Fused-ring acceptors with asymmetric side chains for high-performance thick-film organic solar cells. Adv Mater 29:1703527. https://doi.org/10.1002/adma.201703527

    Article  CAS  Google Scholar 

  76. Feng S, Ce Z, Bi Z, Liu Y, Jiang P, Ming S, Xu X, Ma W, Bo Z (2019) Controlling molecular packing and orientation via constructing a ladder-type electron acceptor with asymmetric substituents for thick-film nonfullerene solar cells. ACS Appl Mater Interfaces 11:3098. https://doi.org/10.1021/acsami.8b19596

    Article  CAS  PubMed  Google Scholar 

  77. Zhang Y, Feng H, Meng L, Wang Y, Chang M, Li S, Guo Z, Li C, Zheng N, Xie Z, Wan X, Chen Y (2019) High performance thick-film nonfullerene organic solar cells with efficiency over 10% and active layer thickness of 600 nm. Adv Energy Mater 9:1902688. https://doi.org/10.1002/aenm.201902688

    Article  CAS  Google Scholar 

  78. Qiu N, Zhang H, Wan X, Li C, Ke X, Feng H, Kan B, Zhang H, Zhang Q, Lu Y, Chen Y (2017) A new nonfullerene electron acceptor with a ladder type backbone for high-performance organic solar cells. Adv Mater 29:1604964. https://doi.org/10.1002/adma.201604964

    Article  CAS  Google Scholar 

  79. Fan Q, Su W, Wang Y, Guo B, Jiang Y, Guo X, Liu F, Russell TP, Zhang M, Li Y (2018) Synergistic effect of fluorination on both donor and acceptor materials for high performance non-fullerene polymer solar cells with 13.5% efficiency. Sci China Chem 61:531. https://doi.org/10.1007/s11426-017-9199-1

    Article  CAS  Google Scholar 

  80. Gao W, An Q, Hao M, Sun R, Yuan J, Zhang F, Ma W, Min J, Yang C (2020) Thick-film organic solar cells achieving over 11% efficiency and nearly 70% fill factor at thickness over 400 nm. Adv Funct Mater 30:1908336. https://doi.org/10.1002/adfm.201908336

    Article  CAS  Google Scholar 

  81. Wang J-L, Liu K-K, Hong L, Ge G-Y, Zhang C, Hou J (2018) Selenopheno[3,2-b]thiophene-based narrow-bandgap nonfullerene acceptor enabling 13.3% efficiency for organic solar cells with thickness-insensitive feature. ACS Energy Lett 3:2967. https://doi.org/10.1021/acsenergylett.8b01808

    Article  CAS  Google Scholar 

  82. Feng H, Song X, Zhang Z, Geng R, Yu J, Yang L, Baran D, Tang W (2019) Molecular orientation unified nonfullerene acceptor enabling 14% efficiency As-Cast organic solar cells. Adv Funct Mater 29:1903269. https://doi.org/10.1002/adfm.201903269

    Article  CAS  Google Scholar 

  83. Gasparini N, Salleo A, McCulloch I, Baran D (2019) The role of the third component in ternary organic solar cells. Nat Rev Mater 4:229. https://doi.org/10.1038/s41578-019-0093-4

    Article  Google Scholar 

  84. Tan CAW, Wong BT (2021) Unraveling the mystery of ternary organic solar cells—a review on the influence of third component on structure-morphology-performance relationships. Solar RRL. https://doi.org/10.1002/solr.202100503

    Article  Google Scholar 

  85. Lee J, Lee SM, Chen S, Kumari T, Kang S-H, Cho Y, Yang C (2019) Organic photovoltaics with multiple donor-acceptor pairs. Adv Mater 31:1804762. https://doi.org/10.1002/adma.201804762

    Article  CAS  Google Scholar 

  86. An Q, Zhang F, Zhang J, Tang W, Deng Z, Hu B (2016) Versatile ternary organic solar cells: a critical review. Energy Environ Sci 9:281. https://doi.org/10.1039/C5EE02641E

    Article  Google Scholar 

  87. Adil MA, Iqbal MJ, Zhang J, Wei Z (2021) Unconventional third components for ternary organic solar cells. Mater Today Energy 21:100728. https://doi.org/10.1016/j.mtener.2021.100728

    Article  CAS  Google Scholar 

  88. Zhang M, Zhang Z, Wang J, An Q, Peng H, Tang W, Zhang F (2019) 13.26% efficiency polymer solar cells by optimizing photogenerated exciton distribution and phase separation with the third component. Solar RRL 3:1900269. https://doi.org/10.1002/solr.201900269

    Article  CAS  Google Scholar 

  89. Wang H, Zhang Z, Liu X, Qu S, Guang S, Ye Z, Yu J, Tang W (2021) 14.55% efficiency PBDB-T ternary organic solar cells enabled by two alloy-forming acceptors featuring distinct structural orders. Chem Eng J 413:127444. https://doi.org/10.1016/j.cej.2020.127444

    Article  CAS  Google Scholar 

  90. Wang H, Zhang Z, Yu J, Liu X, Tang W (2021) High mobility acceptor as third component enabling high-performance large area and thick active layer ternary solar cells. Chem Eng J 418:129539. https://doi.org/10.1016/j.cej.2021.129539

    Article  CAS  Google Scholar 

  91. Wang H, Yang L, Lin P-C, Chueh C-C, Liu X, Qu S, Guang S, Yu J, Tang W (2021) A simple dithieno[3,2-b:2′,3′-d]pyrrol-rhodanine molecular third component enables over 16.7% efficiency and stable organic solar cells. Small 17:2007746. https://doi.org/10.1002/smll.202007746

    Article  CAS  Google Scholar 

  92. Hu J, Guo Q, Fang J, Liu Q, Liang H, Lv J, Yin Z, Lin J, Ou X, Guo X, Zhang M (2021) High-performance alloy-like ternary organic solar cells with two compatible non-fullerene acceptors. Org Electron 95:106201. https://doi.org/10.1016/j.orgel.2021.106201

    Article  CAS  Google Scholar 

Download references

Acknowledgements

M.S.K. acknowledges His Majesty's Trust Fund for Strategic Research (Grant no. SR/SQU/SCI/CHEM/21/01) and The Ministry of Higher Education, Research and Innovation (MoHERI), Oman (Grant no.: RC/RG-SCI/CHEM/20/01) for funding. R.I. thanks HM's Trust Fund for a postdoctoral fellowship. H.A.S. acknowledges the Ministry of Education, Oman and SQU for a Ph.D. scholarship.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Rashid Ilmi or Muhammad S. Khan.

Ethics declarations

Conflict of interest

The authors declare no conflict of interest.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ilmi, R., Al-Sharji, H. & Khan, M.S. Recent Progress in Indacenodithiophene-Based Acceptor Materials for Non-Fullerene Organic Solar Cells. Top Curr Chem (Z) 380, 18 (2022). https://doi.org/10.1007/s41061-022-00372-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s41061-022-00372-y

Keywords

Navigation