Skip to main content
Log in

Total RNA Synthesis and its Covalent Labeling Innovation

  • Review
  • Published:
Topics in Current Chemistry Aims and scope Submit manuscript

Abstract

RNA plays critical roles in a wide range of physiological processes. For example, it is well known that RNA plays an important role in regulating gene expression, cell proliferation, and differentiation, and many other chemical and biological processes. However, the research community still suffers from limited approaches that can be applied to readily visualize a specific RNA-of-interest (ROI). Several methods can be used to track RNAs; these rely mainly on biological properties, namely, hybridization, aptamer, reporter protein, and protein binding. With respect to covalent approaches, very few cases have been reported. Happily, several new methods for efficient labeling studies of ROIs have been demonstrated successfully in recent years. Additionally, methods employed for the detection of ROIs by RNA modifying enzymes have also proved feasible. Several approaches, namely, phosphoramidite chemistry, in vitro transcription reactions, co-transcription reactions, chemical post-modification, RNA modifying enzymes, ligation, and other methods targeted at RNA labeling have been revealed in the past decades. To illustrate the most recent achievements, this review aims to summarize the most recent research in the field of synthesis of RNAs-of-interest bearing a variety of unnatural nucleosides, the subsequent RNA labeling research via biocompatible ligation, and beyond.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Scheme 2
Scheme 3
Scheme 4
Scheme 5
Scheme 6
Scheme 7
Scheme 8
Scheme 9
Scheme 10
Scheme 11
Scheme 12
Scheme 13
Scheme 14
Scheme 15
Scheme 16
Fig. 1
Scheme 17
Scheme 18
Fig. 2
Scheme 19
Fig. 3
Scheme 20
Scheme 21
Scheme 22
Scheme 23
Scheme 24
Scheme 25
Fig. 4
Scheme 26
Scheme 27
Scheme 28
Scheme 29
Scheme 30
Scheme 31
Scheme 32
Scheme 33
Scheme 34
Scheme 35
Fig. 5
Scheme 36
Scheme 37
Scheme 38
Scheme 39
Fig. 6
Scheme 40
Fig. 7
Scheme 41
Scheme 42
Scheme 43
Scheme 44
Scheme 45
Scheme 46
Scheme 47
Scheme 48
Scheme 49
Scheme 50
Scheme 51
Scheme 52
Scheme 53
Scheme 54
Scheme 55
Scheme 56
Scheme 57
Fig. 8
Scheme 58
Scheme 59
Fig. 9
Scheme 60
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. England W, Garfio C, Spitale R (2021). ChemBioChem 22:1114–1121. https://doi.org/10.1002/cbic.202000340

  2. Cech TR, Steitz JA (2014) Cell 157(1):77–94

    Article  CAS  PubMed  Google Scholar 

  3. Helm M, Alfonzo JD (2014) Chem Bio 21(2):174–185

    Article  CAS  Google Scholar 

  4. Roundtree IA, Evans ME, Pan T, He C (2017) Cell 169(7):1187–1200

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Paredes E, Evans M, Das SR (2011) Methods 54:251–259

    Article  CAS  PubMed  Google Scholar 

  6. George JT, Srivatsan SG (2017) Methods 120:28–38

    Article  CAS  PubMed  Google Scholar 

  7. Buxbaum AR, Haimovich G, Singer RH (2015) Nat Rev Mol Cell Biol 16(2):95–109

    Article  CAS  PubMed  Google Scholar 

  8. Rau K, Rentmeister A, Cent ACS (2017) Sci 3:701–707

    CAS  Google Scholar 

  9. Mannack LVJC, Eising S, Rentmeister A (2016) F1000 Research (F1000 Faculty Rev) 5:775

  10. Dean KM, Palmer AE (2014) Nat Chem Bio 10:512–523

    Article  CAS  Google Scholar 

  11. Schulz D, Rentmeister A (2014) ChemBioChem 15:2342–2347

    Article  CAS  PubMed  Google Scholar 

  12. Rombouts K, Braeckmans K, Remaut K (2016) Bioconjugate Chem 27:280–297

    Article  CAS  Google Scholar 

  13. Boutorine AS, Novopashina DS, Krasheninina OA, Nozeret K, Venyaminova AG (2013) Molecules 18:15357–15397

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Rath AK, Rentmeister A (2015) Curr Opin Chem Bio 31:42–49

    CAS  Google Scholar 

  15. Armitage BA (2011) Curr Opin Chem Bio 15:806–812

    Article  CAS  Google Scholar 

  16. Urbanek MO, Galka-Marciniak P, Olejniczak M, Krzyzosiak WJ (2014) RNA Biol 11(8):1083–1095

    Article  PubMed  PubMed Central  Google Scholar 

  17. Hayashi G, Okamoto A (2013) Chem Rec 13:209–217

    Article  CAS  PubMed  Google Scholar 

  18. Dellafiore MA, Montserrat JM, Iribarren AM (2016) Front Chem 4:18 (and references cited therein)

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  19. Anhäuser L, Hüwel S, Zobel T, Rentmeister A (2019) Nucleic Acids Res 47(7):e42 (and references cited therein)

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  20. Jawalekar AM, Meeuwenoord N, Cremers JGO, Overkleeft HS, van der Marel GA, Rutjes FPJT, van Delft FL (2008) J Org Chem 73:287–290

    Article  CAS  PubMed  Google Scholar 

  21. Kiviniemi A, Virta P, Lönnberg H (2010) Bioconjugate Chem 21(10):1890–1901

    Article  CAS  Google Scholar 

  22. Jayaprakash KN, Peng C-G, Butler D, Varghese JP, Maier MA, Rajeev KG, Manoharan M (2010) Org Lett 12(23):5410–5413

    Article  CAS  PubMed  Google Scholar 

  23. Aigner M, Hartl M, Fauster K, Steger J, Bister K, Micura R (2011) ChemBioChem 12:47–51

    Article  CAS  PubMed  Google Scholar 

  24. Yamada T, Peng C-G, Matsuda S, Addepalli H, Jayaprakash KN, Alam MdR, Mills K, Maier MA, Charisse K, Sekine M, Manoharan M, Rajeev KG (2011) J Org Chem 76:1198–1211

    Article  CAS  PubMed  Google Scholar 

  25. Seidu-Larry S, Krieg B, Hirsch M, Helm M, Domingo O (2012) Chem Commun 48:11014–11016

    Article  CAS  Google Scholar 

  26. Wunderlich CH, Spitzer R, Santner T, Fauster K, Tollinger M, Kreutz C (2012) J Am Chem Soc 134:7558–7569

    Article  CAS  PubMed  Google Scholar 

  27. Paredes E, Das SR (2012) Bioorg Med Chem Lett 22:5313–5316

    Article  CAS  PubMed  Google Scholar 

  28. Fauster K, Hartl M, Santner T, Aigner M, Kreutz C, Bister K, Ennifar E, Micura R, Chem ACS (2012) Biol 7:581–589

    CAS  Google Scholar 

  29. Haugland MM, El-Sagheer AH, Porter RJ, Peña RJ, Brown T, Anderson EA, Lovett JE (2016) J Am Chem Soc 138:9069–9072

    Article  CAS  PubMed  Google Scholar 

  30. Santner T, Hartl M, Bister K, Micura R (2014) Bioconjugate Chem 25:188–195

    Article  CAS  Google Scholar 

  31. Pyka A-M, Domnick C, Braun F, Kath-Schorr S (2014) Bioconjugate Chem 25:1438–1443

    Article  CAS  Google Scholar 

  32. Gierlich J, Burley GA, Gramlich PME, Hammond DM, Carell T (2006) Org Lett 8(17):3639–3642

    Article  CAS  PubMed  Google Scholar 

  33. Salic A, Mitchison TJ (2008) PNAS 105(7):2415–2420

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Cmarko D, Verschure PJ, Martin TE, Dahmus ME, Krause S, Fu X-D, van Driel R, Fakan S (1999) Mol Biol Cell 10(1):211–223

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Neef AB, Luedtke NW (2011) Proc Natl Acad Sci USA 108:20404–20409

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Rieder U, Luedtke NW (2014) Angew Chem Int Ed 53:9168–9172

    Article  CAS  Google Scholar 

  37. Qu D, Wang G, Wang Z, Zhou L, Chi W, Cong S, Ren X, Liang P, Zhang B (2011) Anal Biochem 417:112–121

    Article  CAS  PubMed  Google Scholar 

  38. Guan L, van der Heijden GW, Bortvin A, Greenberg MM (2011) ChemBioChem 12:2184–2190

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Neef AB, Samain F, Luedtke NW (2012) ChemBioChem 13:1750–1753

    Article  CAS  PubMed  Google Scholar 

  40. Wang IH, Suomalainen M, Andriasyan V, Kilcher S, Mercer J, Neef A, Luedtke NW, Greber UF (2013) Cell Host Microbe 14:468–480

    Article  CAS  PubMed  Google Scholar 

  41. Neef AB, Luedtke NW (2014) ChemBioChem 15:789–793

    Article  CAS  PubMed  Google Scholar 

  42. Srivatsan SG, Tor Y (2009) Chem Asian J 4:419–427

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Pawar MG, Srivatsan SG (2011) Org Lett 13(5):1114–1117

    Article  CAS  PubMed  Google Scholar 

  44. Kawai R, Kimoto M, Ikeda S, Mitsui T, Endo M, Yokoyama S, Hirao I (2005) J Am Chem Soc 127:17286–17295

    Article  CAS  PubMed  Google Scholar 

  45. Ishizuka T, Kimoto M, Satoa A, Hirao I (2012) Chem Commun 48:10835–10837

    Article  CAS  Google Scholar 

  46. Seo Y-J, Malyshev DA, Lavergne T, Ordoukhanian P, Romesberg FE (2011) J Am Chem Soc 133:19878–19888

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Rao H, Sawant AA, Tanpure AA, Srivatsan SG (2012) Chem Commun 48:498–500

    Article  CAS  Google Scholar 

  48. Asare-Okai PN, Agustin E, Royzen M (2014) Chem Commun 50:7844–7847

    Article  CAS  Google Scholar 

  49. Someya T, Ando A, Kimoto M, Hirao I (2012) Chem Commun 48:11014–11016

    Article  CAS  Google Scholar 

  50. Someya T, Ando A, Kimoto M, Hirao I (2015) Nucleic Acids Res 43(14):6665–6676

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Domnick C, Eggert F, Kath-Schorr S (2015) Chem Commun 51:8253

    Article  CAS  Google Scholar 

  52. Eggert F, Kath-Schorr S (2016) Chem Commun 52:7284–7287

    Article  CAS  Google Scholar 

  53. Lavergne T, Lamichhane R, Malyshev DA, Li Z, Li L, Sperling E, Williamson JR, Millar DP, Romesberg FE (2016) ACS Chem Biol 11:1347–1353

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Wang Y, Chen Y, Hu Y, Fang X (2020) Proc Natl Acad Sci USA 117(37):22823–22832

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Sawant AA, Tanpure AA, Mukherjee PP, Athavale S, Kelkar A, Galande S, Srivatsan SG (2016) Nucleic Acids Res 44(2):e16 (and references cited therein)

    Article  PubMed  CAS  Google Scholar 

  56. Sawant AA, Mukherjee PP, Jangid RK, Galande S, Srivatsan SG (2016) Org Biomol Chem 14:5832–5842

    Article  CAS  PubMed  Google Scholar 

  57. Zheng Y-X, Beal PA (2016) Bioorg Med Chem Lett 26:1799–1802

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. George JT, Srivatsan SG (2017) Bioconjugate Chem 28:1529–1536

    Article  CAS  Google Scholar 

  59. Milisavljevič N, Perlíková P, Pohla R, Hocek M (2018) Org Biomol Chem 16:5800–5807

    Article  PubMed  Google Scholar 

  60. Stabl SJ, Chamberlin MJ (1978) J Biol Chem 253:4951–4959

    Article  Google Scholar 

  61. Bretner M, Beckett D, Sood RK, Baldisseri DM, Hosmane RS (1999) Bioorg Med Chem 7:2931–2936

    Article  CAS  PubMed  Google Scholar 

  62. Chelliserrykattil J, Ellington AD (2004) Nat Biotechnol 22:1155–1160

    Article  CAS  PubMed  Google Scholar 

  63. Langer PR, Waldrop AA, Ward DC (1981) Proc Natl Acad Sci USA 78:6633–6637

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Piccirilli JA, Krauch T, Moroney SE, Benner SA (1990) Nature 343:33–37

    Article  CAS  PubMed  Google Scholar 

  65. Piccirilli JA, Moroney SE, Benner SA (1991) Biochemistry 30:10350–10356

    Article  CAS  PubMed  Google Scholar 

  66. Tor Y, Dervan PB (1993) J Am Chem Soc 115:4461–4467

    Article  CAS  Google Scholar 

  67. Dewey TW, Mundt AA, Crouch GJ, Zyznewski MC, Eaton BE (1995) J Am Chem Soc 117:8474–8475

    Article  CAS  Google Scholar 

  68. Vaish NK, Fraley AW, Shostak JW, McLaughlin LW (2000) Nucleic Acids Res 28:3316–3322

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Vaish NK, Larralde R, Fraley AW, Shostak JW, McLaughlin LW (2003) Biochemistry 42:8842–8851

    Article  CAS  PubMed  Google Scholar 

  70. Huang F, Wang G, Coleman T, Li N (2003) RNA 9:1562–1570

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Hirao I (2006) Biotechniques 40:711–717

    Article  CAS  PubMed  Google Scholar 

  72. Hirao I, Kimoto M, Mitsui T, Fujiwara T, Kawai R, Sato A, Harada Y, Yokoyama S (2006) Nat Methods 3:729–735

    Article  CAS  PubMed  Google Scholar 

  73. Srivatsan SG, Tor Y (2007) J Am Chem Soc 129:2044–2053

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Srivatsan SG, Tor Y (2007) Tetrahedron 63:3601–3607

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Srivatsan SG, Tor Y (2008) Org Biomol Chem 6:1334–1338

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Srivatsan SG, Tor Y (2007) Nat Protoc 2:1547–1555

    Article  CAS  PubMed  Google Scholar 

  77. Sakthivel K, Barbas CF III (1998) Angew Chem Int Ed 37:2872–2875

    Article  CAS  Google Scholar 

  78. Lutz MJ, Horlacher J, Benner SA (1998) Bioorg Med Chem Lett 8:499–504

    Article  CAS  PubMed  Google Scholar 

  79. Lutz S, Burgstaller P, Benner SA (1999) Nucleic Acids Res 27:2792–2798

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Perrin DM, Garestier T, Hèléne C (1999) Nucleosides Nucleotides 18:377–391

    Article  CAS  PubMed  Google Scholar 

  81. Brakmann S, Lobermann S (2001) Angew Chem Int Ed 40:1427–1429

    Article  CAS  Google Scholar 

  82. Kuwahara M, Ohbayashi T, Hanawa K, Shoji A, Ozaki AN, Ozaki H, Sawai H (2002) Nucleic Acids Res Suppl 2:83–84

    Article  CAS  Google Scholar 

  83. Weizman H, Tor Y (2002) J Am Chem Soc 124:1568–1569

    Article  CAS  PubMed  Google Scholar 

  84. Jäger S, Famulok M (2004) Angew Chem Int Ed 43:3337–3340

    Article  Google Scholar 

  85. Jäger S, Rasched G, Kornreich-Leshem H, Engeser M, Thum O, Famulok M (2005) J Am Chem Soc 127:15071–15082

    Article  PubMed  CAS  Google Scholar 

  86. Sismour AM, Benner SA (2005) Nucleic Acids Res 33:5640–5646

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. Matsui M, Nishiyama Y, Ueji S, Ebara Y (2007) Bioorg Med Chem Lett 17:456–460

    Article  CAS  PubMed  Google Scholar 

  88. Weisbrod SH, Marx A (2007) Chem Commun 2007:1828–1830. https://doi.org/10.1039/b618257g

  89. Veedu RN, Vester B, Wengel J (2007) ChemBioChem 8:490–492

    Article  CAS  PubMed  Google Scholar 

  90. Hocek M, Fojta M (2008) Org Biomol Chem 6:2233–2241

    Article  CAS  PubMed  Google Scholar 

  91. Cahová H, Havran L, Brázdilová P, Pivonˇková H, Pohl R, Fojta M, Hocek M (2008) Angew Chem Int Ed 47:2059–2062

    Article  CAS  Google Scholar 

  92. Obeid S, Yolikov M, Jeschke G, Marx A (2008) Angew Chem Int Ed 47:6782–6785

    Article  CAS  Google Scholar 

  93. Lam C, Hipolito C, Perrin DM (2008) Eur J Org Chem 29:4915–4923

    Article  CAS  Google Scholar 

  94. Zhu B, Hernandez A, Tan M, Wollenhaupt J, Tabor S, Richardson CC (2015) Nucleic Acids Res 43(14):e94

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  95. Zhu B, Tabor S, Richardson CC (2014) Nucleic Acids Res 42(5):e33

    Article  CAS  PubMed  Google Scholar 

  96. Zhu B (2014) Front Microbiol 5:181

    Article  PubMed  PubMed Central  Google Scholar 

  97. Zhu B, Tabor S, Raytcheva DA, Hernandez A, King JA, Richardson CC (2013) J Biol Chem 288(5):3545–3552

    Article  CAS  PubMed  Google Scholar 

  98. Favre A, Bezerra R, Hajnsdorf E, Dubreuil YL, Expert-Bezancon A (1986) Eur J Biochem 160:441–449

    Article  CAS  PubMed  Google Scholar 

  99. Rabani M, Levin JZ, Fan L, Adiconis X, Raychowdhury R, Garber M, Gnirke A, Nusbaum C, Hacohen N, Friedman N, Amit I, Regev A (2011) Nat Biotechnol 29:436–442

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  100. Aroca Á, Serna A, Gotor C, Romero LC (2015) Plant Physiol 168:334–342

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  101. Matsushima W, Herzog VA, Neumann T, Gapp K, Zuber J, Ameres SL, Miska EA (2018) Development 145:dev164640. https://doi.org/10.1242/dev.164640

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  102. Miller MR, Robinson KJ, Cleary MD, Doe CQ (2009) Nat Methods 6(6):439

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  103. Wan J-M, Roth AF, Bailey AO, Davis NG (2007) Nat Protoc 2(7):1573

    Article  CAS  PubMed  Google Scholar 

  104. Herzog VA, Reichholf B, Neumann T, Rescheneder P, Bhat P, Burkard TR, Wlotzka W, von Haeseler A, Zuber J, Ameres SL (2017) Nat Methods 14(12):1198

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  105. Yang CH, Soell D (1974) Biochemistry 13(17):3615

    Article  CAS  PubMed  Google Scholar 

  106. Duffy EE, Rutenberg-Schoenberg M, Stark CD, Kitchen RR, Gerstein MB, Simon MD (2015) Mol Cell 59(5):858

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  107. Schofield JA, Duffy EE, Kiefer L, Sullivan MC, Simon MD (2018) Nat Methods 15(3):221

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  108. Jao CY, Salic A (2008) Proc Natl Acad Sci USA 105(41):15779–15784

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  109. Grammel M, Hang H, Conrad NK (2012) ChemBioChem 13:1112–1115

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  110. Curanovic D, Cohen M, Singh I, Slagle CE, Leslie CS, Jaffrey SR (2013) Nat Chem Bio 9:671–673

    Article  CAS  Google Scholar 

  111. Nainar S, Beasley S, Fazio M, Kubota M, Dai N, CorrTa IR Jr, Spitale RC (2016) ChemBioChem 17:2149–2152

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  112. Nguyen K, Fazio M, Kubota M, Nainar S, Feng C, Li X, Atwood SX, Bredy TW, Spitale RC (2017) J Am Chem Soc 139:2148–2151

    Article  CAS  PubMed  Google Scholar 

  113. Feng C, Li Y, Spitale RC (2017) Org Biomol Chem 15:5117–5120

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  114. Warminski M, Sikorski PJ, Warminska Z, Lukaszewicz M, Kropiwnicka A, Zuberek J, Darzynkiewicz E, Kowalska J, Jemielity J (2017) Bioconjugate Chem 28:1978–1992

    Article  CAS  Google Scholar 

  115. Zhang Y, Kleiner RE (2019) J Am Chem Soc 141(8):3347–3351

    Article  CAS  PubMed  Google Scholar 

  116. Triemer T, Messikommer A, Glasauer SMK, Alzeer J, Paulisch MH, Luedtke NW (2018) Proc Natl Acad Sci USA 115(7):E1366–E1373

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  117. Zajaczkowski EL, Zhao Q-Y, Zhang Z-H, Li X, Wei W, Marshall PR, Leighton LJ, Nainar S, Feng C, Spitale RC, Bredy TW, Chem ACS (2018) Neurosci 9:1858–1865

    CAS  Google Scholar 

  118. Samanta A, Krause A, Jäschke A (2014) Chem Commun 50:1313–1316

    Article  CAS  Google Scholar 

  119. Wilson C, Szostak JW (1995) Nature 374:777–782

    Article  CAS  PubMed  Google Scholar 

  120. McDonald RI, Guilinger JP, Mukherji S, Curtis EA, Lee WI, Liu DR (2014) Nat Chem Bio 10:1049–1054

    Article  CAS  Google Scholar 

  121. Sharma AK, Plant JJ, Rangel AE, Meek KN, Anamisis AJ, Hollien J, Heemstra JM, Chem ACS (2014) Biol 9:1680–1684

    CAS  Google Scholar 

  122. Onizuka K, Shibata A, Taniguchi Y, Sasaki S (2011) Chem Commun 47:5004–5006

    Article  CAS  Google Scholar 

  123. Onizuka K, Taniguchi Y, Sasaki S (2007) Nucleic Acids Symp Ser 51:5–6

    Article  CAS  Google Scholar 

  124. Onizuka K, Taniguchi Y, Sasaki S (2009) Bioconjugate Chem 20:799–803

    Article  CAS  Google Scholar 

  125. Onizuka K, Taniguchi Y, Sasaki S (2010) Nucleic Acids Res 38:1760–1766

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  126. Onizuka K, Taniguchi Y, Sasaki S (2010) Bioconjugate Chem 21:1508–1512

    Article  CAS  Google Scholar 

  127. Sierant M, Leszczynska G, Sadowska K, Dziergowska A, Rozanski M, Sochacka E, Nawrot B (2016) Nucleic Acids Res 44(22):10986–10998

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  128. Walunj MB, Tanpure AA, Srivatsan SG (2018) Nucleic Acids Res 46(11):e65

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  129. Motorin Y, Burhenne J, Teimer R, Koynov K, Willnow S, Weinhold E, Helm M (2011) Nucleic Acids Res 39(5):1943–1952

    Article  CAS  PubMed  Google Scholar 

  130. Tomkuviene M, Clouet-d’Orval B, Černiauskas I, Weinhold E, Klimašauskas S (2012) Nucleic Acids Res 40(14):6765–6773

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  131. Schulz D, Holstein JM, Rentmeister A (2013) Angew Chem Int Ed 52:7874–7878

    Article  CAS  Google Scholar 

  132. Holstein JM, Schulz D, Rentmeister A (2014) Chem Commun 50:4478–4481

    Article  CAS  Google Scholar 

  133. Holstein JM, Stummer D, Rentmeister A (2015) Chem Sci 6:1362–1369

    Article  CAS  PubMed  Google Scholar 

  134. Muttach F, Rentmeister A (2016) Angew Chem Int Ed 55:1917–1920

    Article  CAS  Google Scholar 

  135. Hartstock K, Nilges BS, Ovcharenko A, Cornelissen NV, Pgllen N, Lawrence-Dçrner A-M, Leidel SA, Rentmeister A (2018) Angew Chem Int Ed 57:6342–6346

    Article  CAS  Google Scholar 

  136. Alexander SC, Busby KN, Cole CM, Zhou C-Y, Devaraj NK (2015) J Am Chem Soc 137:12756–12759

    Article  CAS  PubMed  Google Scholar 

  137. Zhou C-Y, Alexander SC, Devaraj NK (2017) Chem Sci 8:7169–7173

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  138. Li F-H, Dong J-S, Hu X-S, Gong W-M, Li J-S, Shen J, Tian H-F, Wang J-Y (2015) Angew Chem Int Ed 54:4597–4602

    Article  CAS  Google Scholar 

  139. Shabarova ZA (1988) Biochimie 70:1323

    Article  CAS  PubMed  Google Scholar 

  140. Dolinnaya NG, Sokolova NI, Ashirbekova DT, Shabarova ZA (1991) Nucleic Acids Res 19:3067

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  141. Moore MJ, Query CC (2000) Methods Enzym 317:109–123 (and references cited therein)

    Article  CAS  Google Scholar 

  142. Yoshimura Y, Noguchi Y, Fujimoto K (2007) Org Biomol Chem 5:139–142

    Article  CAS  PubMed  Google Scholar 

  143. Baum DA, Silverman SK (2007) Angew Chem Int Ed 46:3502–3504

    Article  CAS  Google Scholar 

  144. Büttner L, Javadi-Zarnaghi F, Höbartner C (2014) J Am Chem Soc 136:8131-8137

  145. Li Y, Fin A, McCoy L, Tor Y (2017) Angew Chem Int Ed 129:1323–1327

    Article  Google Scholar 

  146. Winz M-L, Samanta A, Benzinger D, Jäschke A (2012) Nucleic Acids Res 40(10):e78

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  147. Jahn K, Olsen EM, Nielsen MM, Tørring T, Zadegan RM, Andersen ES, Gothelf KV, Kjems J (2011) Bioconjugate Chem 22:95–100

    Article  CAS  Google Scholar 

  148. Liu X-M, Zhou J, Mao Y-H, Ji Q-Q, Qian S-B (2019) Nat Chem Biol 15:865–871. https://doi.org/10.1038/s41589-019-0327-1

  149. Wei J-B, He C (2019). Nat Chem Biol 15:848–849. https://doi.org/10.1038/s41589-019-0349-8

  150. Klöcker N, Weissenboeck FP, Rentmeister A (2020) Chem Soc Rev 49(23):8749–8773

    Article  PubMed  PubMed Central  Google Scholar 

  151. Depmeier H, Hoffmann E, Bornewasser L, Kath-Schorr S (2021) ChemBioChem 22(19):2826–2847

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

R.W. thanks Huazhong University of Science and Technology for the start-up funding. R.W. thanks “100 Talents Program” Youth Project of Hubei Province for financial support. R.W. also thanks China Postdoctoral Science Foundation (No. 217877 to J.Z.Z.) for financial support. The assistance of Hanqing Dong (Arvinas., Inc.) was appreciated during the preparation of this manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rui Wang.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhou, H., Li, Y., Gan, Y. et al. Total RNA Synthesis and its Covalent Labeling Innovation. Top Curr Chem (Z) 380, 16 (2022). https://doi.org/10.1007/s41061-022-00371-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s41061-022-00371-z

Keywords

Navigation