Skip to main content
Log in

Towards Microcapsules with Improved Barrier Properties

  • Review
  • Published:
Topics in Current Chemistry Aims and scope Submit manuscript

Abstract

Microencapsulation is the generic term for numerous technologies, which are often used when the release rate of an active substance in a medium has to be controlled and/or contact between the active substance and the medium has to be prevented. This is achieved by wrapping the tiny particles or droplets of the active substance (capsule core) with a thin layer, or membrane, of another material (capsule shell). The permeability of the membrane determines whether, how fast and under which conditions the active material will be released and/or the components of the medium will enter the inner part of the capsule. Insofar as application is concerned, premature release of an active substance from microcapsules during storage is a very common problem. Prevention of diffusion of an active component or components of the outer medium through the capsule membrane is a complex challenge, which so far cannot be considered as solved. This review briefly covers the theoretical aspects of release kinetics from microcapsules and discusses how such parameters as capsule average size, capsule shell thickness as well as the chemical composition of active material and medium can influence the release profiles. All theoretical considerations are based on the dissolution-diffusion mechanism classically used for the explanation of diffusion trough flat membranes/films. In the second part of the manuscript it is discussed, which strategies have been used for the improvement of the barrier properties of microcapsules up to date and to which extent those strategies were successful.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Wijmans JG, Baker RW (1995) The solution-diffusion model: a review. J Membr Sci 107(1–2):1–21

    Article  CAS  Google Scholar 

  2. Satpathy G, Rosenberg M (2003) Encapsulation of chlorothiazide in whey proteins: effects of wall-to-core ratio and cross-linking conditions on microcapsule properties and drug release. J Microencapsul 20(2):227–245

    Article  CAS  Google Scholar 

  3. Yow HN et al (2009) Dye diffusion from microcapsules with different shell thickness into mammalian skin. Eur J Pharm Biopharm 72(1):62–68

    Article  CAS  Google Scholar 

  4. Dowding PJ et al (2004) Oil core–polymer shell microcapsules prepared by internal phase separation from emulsion droplets. I. Characterization and release rates for microcapsules with polystyrene shells. Langmuir 20(26):11374–11379

    Article  CAS  Google Scholar 

  5. Li Z-Z et al (2006) Controlled release of avermectin from porous hollow silica nanoparticles: influence of shell thickness on loading efficiency, UV-shielding property and release. J Control Release 111(1–2):81–88

    Article  CAS  Google Scholar 

  6. Hansen CM (2007) Hansen solubility parameters: a user’s handbook, 2nd edn. CRC, Boca Raton, ISBN: 0-8493-1525-5

    Book  Google Scholar 

  7. Flory PJ (1942) Thermodynamics of high polymer solutions. J Chem Phys 10(1):51–61

    Article  CAS  Google Scholar 

  8. Flory PJ (1950) Statistical mechanics of swelling of network structures. J Chem Phys 18(1):108–111

    Article  CAS  Google Scholar 

  9. Burke J (1984) Solubility parameters: theory and application. In: Jensen C (ed) AIC Book and Paper Group Annual. vol. 3, pp 13–58

  10. Chen PW, Erb RM, Studart AR (2012) Designer polymer-based microcapsules made using microfluidics. Langmuir 28(1):144–152

    Article  CAS  Google Scholar 

  11. Yong CS et al (2006) Retarded dissolution of ibuprofen in gelatin microcapsule by cross-linking with glutaradehyde. Arch Pharmacal Res 29(6):520–524

    Article  CAS  Google Scholar 

  12. Yang YH et al (2012) Improving oxygen barrier and reducing moisture sensitivity of weak polyelectrolyte multilayer thin films with crosslinking. Rsc Adv 2(32):12355–12363

    Article  CAS  Google Scholar 

  13. Shan XL et al (2009) Fabrication and characterization of microencapsulated n-octadecane with an acrylic co-polymeric shell. Acta Phys Chim Sin 25(12):2590–2596

    CAS  Google Scholar 

  14. Elia R et al (2015) Encapsulation of volatile compounds in silk microparticles. J Coat Technol Res 12(4):793–799

    Article  CAS  Google Scholar 

  15. Hofmeister I, Landfester K, Taden A (2014) pH-sensitive nanocapsules with barrier properties: fragrance encapsulation and controlled release. Macromolecules 47(16):5768–5773

    Article  CAS  Google Scholar 

  16. Nordstierna L et al (2010) Comparison of release behaviour from microcapsules and microspheres. Prog Org Coat 69(1):49–51

    Article  CAS  Google Scholar 

  17. Mercadé-Prieto R et al (2012) Determination of the shell permeability of microcapsules with a core of oil-based active ingredient. J Microencapsul 29(5):463–474

    Article  Google Scholar 

  18. Hitchcock JP et al (2015) Long-term retention of small, volatile molecular species within metallic microcapsules. ACS Appl Mater Interfaces 7(27):14808–14815

    Article  Google Scholar 

  19. Patchan MW et al (2012) Liquid-filled metal microcapsules. ACS Appl Mater Interfaces 4(5):2406–2412

    Article  CAS  Google Scholar 

  20. Gao WY et al (2015) Combined situ polymerization and thermal cross-linking technique for the preparation of ammonium polyphosphate microcapsules with composite shell. J Phys Chem C 119(52):28999–29005

    Article  CAS  Google Scholar 

  21. Jackson AC et al (2011) Silica-protected micron and sub-micron capsules and particles for self-healing at the microscale. Macromol Rapid Commun 32(1):82–87

    Article  CAS  Google Scholar 

  22. Wu G et al (2014) Robust microcapsules with polyurea/silica hybrid shell for one-part self-healing anticorrosion coatings. J Mater Chem A 2(30):11614–11620

    Article  CAS  Google Scholar 

  23. Yu SY, Wang XD, Wu DZ (2014) Microencapsulation of n-octadecane phase change material with calcium carbonate shell for enhancement of thermal conductivity and serving durability: synthesis, microstructure, and performance evaluation. Appl Energy 114:632–643

    Article  CAS  Google Scholar 

  24. Li G et al (2008) Preparation of mono-dispersed polyurea–urea formaldehyde double layered microcapsules. Polym Bull 60(5):725–731

    Article  CAS  Google Scholar 

  25. Lu SF et al (2011) Preparation and characterization of polyurea/polyurethane double-shell microcapsules containing butyl stearate through interfacial polymerization. J Appl Polym Sci 121(6):3377–3383

    Article  CAS  Google Scholar 

  26. Kang S et al. (2015) Core–shell polymeric microcapsules with superior thermal and solvent stability. ACS Appl Mater Interfaces 7(20):10952–10956

    Article  CAS  Google Scholar 

  27. Zieringer MA et al (2015) Microcapsules for enhanced cargo retention and diversity. Small 11(24):2903–2909

    Article  CAS  Google Scholar 

  28. Chuanjie F, Xiaodong Z (2009) Preparation and barrier properties of the microcapsules added nanoclays in the wall. Polym Adv Technol 20(12):934–939

    Article  Google Scholar 

  29. Dong FP et al (2017) Responsive copolymer-graphene oxide hybrid microspheres with enhanced drug release properties. Rsc Adv 7(7):3720–3726

    Article  CAS  Google Scholar 

  30. Dao TD, Jeong HM (2016) A Pickering emulsion route to a stearic acid/graphene core-shell composite phase change material. Carbon 99:49–57

    Article  CAS  Google Scholar 

  31. Dao TD, Jeong HM (2015) Novel stearic acid/graphene core-shell composite microcapsule as a phase change material exhibiting high shape stability and performance. Sol Energy Mater Sol Cells 137:227–234

    Article  CAS  Google Scholar 

  32. Li M, Chen MR, Wu ZS (2014) Enhancement in thermal property and mechanical property of phase change microcapsule with modified carbon nanotube. Appl Energy 127:166–171

    Article  CAS  Google Scholar 

  33. Patchan MW et al (2015) Robust composite-shell microcapsules via Pickering emulsification. ACS Appl Mater Interfaces 7(13):7315–7323

    Article  CAS  Google Scholar 

  34. Long Y et al (2010) Organic-inorganic double shell composite microcapsules. Chem Commun 46(10):1718–1720

    Article  CAS  Google Scholar 

  35. Svagan AJ et al (2016) Liquid-core nanocellulose-shell capsules with tunable oxygen permeability. Carbohyd Polym 136:292–299

    Article  CAS  Google Scholar 

  36. Latnikova A et al (2015) Microgel containers for self-healing polymeric materials: morphology prediction and mechanism of formation. Polymer 73:183–194

    Article  CAS  Google Scholar 

  37. Hofmeister I, Landfester K, Taden A (2015) Controlled formation of polymer nanocapsules with high diffusion-barrier properties and prediction of encapsulation efficiency. Angew Chem Int Ed 54(1):327–330

    Article  CAS  Google Scholar 

  38. Latnikova A, Yildirim A (2015) Thermally induced release from polymeric microparticles with liquid core: the mechanism. Soft Matter 11(10):2008–2017

    Article  CAS  Google Scholar 

Download references

Acknowledgement

We would like to thank the members of the Technology Platform Microencapsulation for the fruitful discussions during the manuscript preparation.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alexandra Latnikova.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 758 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Latnikova, A., Jobmann, M. Towards Microcapsules with Improved Barrier Properties. Top Curr Chem (Z) 375, 64 (2017). https://doi.org/10.1007/s41061-017-0152-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s41061-017-0152-5

Keywords

Navigation