Skip to main content

Advertisement

Log in

Challenges Considering the Degradation of Cell Components in Commercial Lithium-Ion Cells: A Review and Evaluation of Present Systems

  • Review
  • Published:
Topics in Current Chemistry Aims and scope Submit manuscript

Abstract

Owing to the high energy and power density of lithium-ion cells (1200 Wh kg−1 and 200 Wh kg−1) and due to their compact design, they are used as energy storage devices in many contemporary mobile applications such as telecommunication systems, notebooks and domestic appliances. Meanwhile their application is not limited only to consumer electronics, they are also standard in hybrid electric (HEVs) and electric vehicles (EVs). However, the profitable application of lithium-ion cells in the automobile industry requires lower costs, lower safety risks, a higher specific energy density and a longer lifetime under everyday conditions. All these aspects are directly or indirectly related to the degradation of the materials in a lithium-ion cell. One possibility for reducing the costs is a second life application of the cells after their usage in (H)EVs. In order to enable this, the safety risks at the end of life of a cell operated in a vehicle have to be reliably predicted. This requires a fundamental knowledge about underlying material degradations during operation. The safety risk of a lithium-ion cell increases during operation because the voltage windows in which the electrodes are cycled shift, resulting in a higher possibility that at least one electrode is operated in a meta- or unstable state. Furthermore, higher impedances due to material degradations lead to increasing heat generation and therefore to an increase in the risk of failure. Higher energy densities can be achieved by raising the end of charge voltage of a cell, causing additional safety risks because many cathode materials tend to decompose at high voltages. Another possibility for achieving higher energy densities is to use nickel-rich or lithium-excess cathode materials, since cathodes are currently limiting the capacity of lithium-ion cells. But these systems show a poor cycling stability (a higher degradation rate). The lifetime of a lithium-ion cell is limited by the degradation of the individual cell components. Although the degradation of materials is the key consideration in achieving lower costs, a higher safety standard, higher energy densities and a longer lifetime, the degradation of the individual cell components in dependence on the operation conditions has hardly been investigated and is poorly understood. The present work reviews known material degradations in commercial lithium-ion cells, shows a way to analyze such degradations in dependence on the operation conditions and describes how these degradation processes lead to observed performance drops.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21
Fig. 22
Fig. 23
Fig. 24
Fig. 25
Fig. 26
Fig. 27
Fig. 28
Fig. 29
Fig. 30
Fig. 31

Similar content being viewed by others

References

  1. Pillot C (2013) Li-ion battery material market review and forecasts 2012–2025. In: Avicenne energy, 3rd israeli power sources conference, May 29–30, 2013

  2. Andre D, Kim S-J, Lamp P, Lux SF, Maglia F, Paschos O, Stiaszny B (2015) Future generations of cathode materials: an automotive industry perspective. J Mater Chem A 3:6709–6732

    Article  CAS  Google Scholar 

  3. Kleiner K (2014) Chemical investigation of aging mechanisms in lithium-ion batteries; PhD thesis, Cuvilliier Verlag Göttingen

  4. Broussely M, Biensan P, Bonhomme F, Blanchard P, Herreyre S, Nechev K, Staniewicz RJJ (2005) Main aging mechanisms in Li Ion batteries. J Power Sources 146(1–2):90–96

    Article  CAS  Google Scholar 

  5. Goodenough JB, Kim Y (2010) Challenges for rechargeable Li batteries. Chem Mater 22(3):587–603

    Article  CAS  Google Scholar 

  6. Aurbach D, Zinigrad E, Cohen Y, Teller H (2002) A short review of failure mechanisms of lithium metal and lithiated graphite anodes in liquid electrolyte solutions. Solid state ion 148(3–4):405–416

    Article  CAS  Google Scholar 

  7. Wohlfahrt-Mehrens M, Vogler C, Garche J (2004) Aging mechanisms of lithium cathode materials. J Power Sources 127:58–64

    Article  CAS  Google Scholar 

  8. Vetter J, Novák P, Wagner MR, Veit C, Möller K-C, Besenhard JO, Winter M, Wohlfahrt-Mehrens M, Vogler C, Hammouche A (2005) Ageing mechanisms in lithium-ion batteries. J Power Sources 147(1–2):269–281

    Article  CAS  Google Scholar 

  9. Arora P, White RE, Doyle M (1998) Capacity fade mechanisms and side reactions in lithium-ion batteries. J Electrochem Soc 145(10):3647–3667

    Article  CAS  Google Scholar 

  10. Peled E (1979) The electrochemical behavior of alkali and alkaline earth metals in nonaqueous battery systems—the solid electrolyte interphase model. J Electrochem Soc 126(12):2047–2051

    Article  CAS  Google Scholar 

  11. Xu K (2004) Nonaqueous liquid electrolytes for lithium-based rechargeable batteries. Chem Rev 104(10):4303–4417

    Article  CAS  Google Scholar 

  12. Peled E, Bar Tow D, Merson A, Gladkich A, Burstein L, Golodnitsky D (2001) Composition, Depth profiles and lateral distribution of materials in the SEI built on HOPG-TOF SIMS and XPS studies. J Power Sources 98:52–57

    Article  Google Scholar 

  13. Aurbach D, Levi MD, Levi E, Schechter A (1997) Failure and stabilization mechanisms of graphite electrodes. J Phys Chem B 101(12):2195–2206

    Article  CAS  Google Scholar 

  14. Aurbach D, Gofer Y, Ben-Zion M, Aped P (1992) The behaviour of lithium electrodes in propylene and ethylene carbonate: Te major factors that influence Li cycling efficiency. J Electroanal Chem 339(1–2):451–471

    Article  CAS  Google Scholar 

  15. Nazri G-A, Pistoia G (eds) (2003) Lithium batteries-science and technology. Springer, New York

    Google Scholar 

  16. Kleiner K, Melke J, Merz M, Jakes P, Nagel P, Schuppler S, Liebau V, Ehrenberg H (2015) Unraveling the degradation process of LiNi 0.8 Co 0.15 Al 0.05 O2 electrodes in commercial lithium ion batteries by electronic structure investigations. ACS Appl Mater Interfaces 7:19589–19600

    Article  CAS  Google Scholar 

  17. Kojima Y, Muto S, Tatsumi K, Kondo H, Oka H, Horibuchi K, Ukyo Y (2011) Degradation analysis of a Ni-based layered positive-electrode active material cycled at elevated temperatures studied by scanning transmission electron microscopy and electron energy-loss spectroscopy. J Power Sources 196(18):7721–7727

    Article  CAS  Google Scholar 

  18. Hausbrand R, Cherkashinin G, Ehrenberg H, Gröting M, Albe K, Hess C, Jaegermann W (2015) Fundamental degradation mechanisms of layered oxide Li-Ion battery cathode materials: methodology, insights and novel approaches. Mater Sci Eng B 192:3–25

    Article  CAS  Google Scholar 

  19. Laubach S, Laubach S, Schmidt PC, Ensling D, Schmid S, Jaegermann W, Thissen A, Nikolowski K, Ehrenberg H (2009) Changes in the crystal and electronic structure of LiCoO(2) and LiNiO(2) upon Li intercalation and de-intercalation. Phys Chem Chem Phys 11:3278–3289

    Article  CAS  Google Scholar 

  20. Aoshima T, Okahara K, Kiyohara C, Shizuka K (2001) Mechanisms of manganese spinels dissolution and capacity fade at high temperature. J Power Sources 97–98:377–380

    Article  Google Scholar 

  21. Kleiner K, Jackes P, Liebau V, Scharner S, Ehrenberg H (2016) Changes of the balancing between anode and cathode due to fatigue in commercial lithium-ion cells. J Power Sources 317:25–34

    Article  CAS  Google Scholar 

  22. Wang Q, Ping P, Zhao X, Chu G, Sun J, Chen C (2012) Thermal runaway caused fire and explosion of lithium ion battery. J Power Sources 208:210–224

    Article  CAS  Google Scholar 

  23. Hoseh M (1960) Some problems in chemical kinetics and reactivity, vol 1. Princeton University Press, Princeton

    Google Scholar 

  24. Xu K, Lam Y, Zhang SS, Jow TR, Curtis TB (2007) Solvation sheath of Li+ in nonaqueous electrolytes and its implication of graphite/electrolyte interface chemistry. J Phys Chem C 111(20):7411–7421

    Article  CAS  Google Scholar 

  25. Xu K (2009) Whether EC and PC differ in interphasial chemistry on graphitic anode and how. J Electrochem Soc 156(9):A751

    Article  CAS  Google Scholar 

  26. Aurbach D, Daroux ML, Faguy PW, Yeager E (1987) Identification of surface films formed on lithium in propylene carbonate solutions. J Electrochem Soc 134(7):1611–1620

    Article  CAS  Google Scholar 

  27. Augustsson A, Herstedt M, Guo J-H, Edström K, Zhunag GV, Ross PN, Rubensson J-E, Nordgren J (2004) Solid electrolyte interphase on graphite Li-Ion battery anodes studied by soft X-ray spectroscopy. Phys Chem Chem Phys 6(16):4185–4189

    Article  CAS  Google Scholar 

  28. Malmgren S, Rensmo H, Gustafsson T, Gorgoi M, Edström K (2010) Nondestructive depth profiling of the solid electrolyte interphase on LiFePO4. ECS Trans 25(36):201–210

    Article  CAS  Google Scholar 

  29. Li Z, Huang J, Yann Liaw B, Metzler V, Zhang J (2014) A review of lithium deposition in lithium-ion and lithium metal secondary batteries. J Power Sources 254:168–182

    Article  CAS  Google Scholar 

  30. Agubra V, Fergus J (2013) Lithium ion battery anode aging mechanisms. Materials (Basel). 6(4):1310–1325

    Article  CAS  Google Scholar 

  31. Koltypin M, Cohen YS, Markovsky B, Cohen Y, Aurbach D (2002) The study of lithium insertion-deinsertion processes into composite graphite electrodes by in situ atomic force microscopy (AFM). Electrochem Commun 4:17–23

    Article  CAS  Google Scholar 

  32. Wagner MR, Albering JH, Moeller K-C, Besenhard JO, Winter M (2005) XRD evidence for the electrochemical formation of Li+ (PC)yCn in PC-based electrolytes. Electrochem Commun 7(9):947–952

    Article  CAS  Google Scholar 

  33. Aurbach D (1993) In situ FTIR spectroelectrochemical studies of surface films formed on Li and nonactive electrodes at low potentials in Li salt solutions containing CO[sub 2]. J Electrochem Soc 140(11):L155

    Article  CAS  Google Scholar 

  34. Broussely M, Herreyre S, Biensan P, Kasztejna P, Nechev K, Staniewicz R (2001) Aging mechanism in Li Ion cells and calendar life predictions. J Power Sources 97–98:13–21

    Article  Google Scholar 

  35. Verma P, Maire P, Novák P (2010) A review of the features and analyses of the solid electrolyte interphase in Li-Ion batteries. Electrochim Acta 55(22):6332–6341

    Article  CAS  Google Scholar 

  36. Yazami R, Reynier Y (2002) Mechanism of self-discharge in graphite–lithium anode. Electrochim Acta 47(8):1217–1223

    Article  CAS  Google Scholar 

  37. Utsunomiya T, Hatozaki O, Yoshimoto N, Egashira M, Morita M (2011) Self-discharge behavior and its temperature dependence of carbon electrodes in lithium-ion batteries. J Power Sources 196(20):8598–8603

    Article  CAS  Google Scholar 

  38. Zhu Y, Wang C (2010) Galvanostatic intermittent titration technique for phase-transformation electrodes. J Phys Chem C 114(6):2830–2841

    Article  CAS  Google Scholar 

  39. Sloop SE, Kerr JB, Kinoshita K (2003) The role of Li-Ion battery electrolyte reactivity in performance decline and self-discharge. J Power Sources 119–121:330–337

    Article  CAS  Google Scholar 

  40. Sugiyama J, Mukai K, Ikedo Y, Nozaki H, Russo PL, Andreica D, Amato A, Ariyoshi K, Ohzuku T (2009) Static magnetic order on the triangular lattice in with. Phys B Condens Matter 404(5–7):663–666

    Article  CAS  Google Scholar 

  41. Wang Y, Nakamura S, Tasaki K, Balbuena PB (2002) Theoretical studies to understand surface chemistry on carbon anodes for lithium-ion batteries: how does vinylene carbonate play its role as an electrolyte additive? J Am Chem Soc 124(16):4408–4421

    Article  CAS  Google Scholar 

  42. Aurbach D (2003) Electrode–solution interactions in Li-ion batteries: a short summary and new insights. J Power Sources 119–121:497–503

    Article  CAS  Google Scholar 

  43. Steiger J, Richter G, Wenk M, Kramer D, Mönig R (2015) Comparison of the growth of lithium filaments and dendrites under different conditions. Electrochem Commun 50:11–14

    Article  CAS  Google Scholar 

  44. Orsini F, du Pasquier A, Beaudouin B, Tarascon JM, Trentin M, Langenhuizen N, de Beer E, Notten P (1999) In situ SEM study of the interfaces in plastic lithium cells. J Power Sources 81–82:918–921

    Article  Google Scholar 

  45. Brissot C (1999) In situ concentration cartography in the neighborhood of dendrites growing in lithium/polymer-electrolyte/lithium cells. J Electrochem Soc 146(12):4393

    Article  CAS  Google Scholar 

  46. Kleiner K, Comas-Vives A, Naderian M, Mueller JE, Fantauzzi D, Mesgar M, Keith JA, Anton J, Jacob T (2011) Multiscale modeling of Au-Island ripening on Au(100). Adv Phys Chem 2011:1–11

    Article  CAS  Google Scholar 

  47. Steiger J, Kramer D, Mönig R (2014) Mechanisms of dendritic growth investigated by in situ light microscopy during electrodeposition and dissolution of lithium. J Power Sources 261:112–119

    Article  CAS  Google Scholar 

  48. Steiger J, Kramer D, Mönig R (2014) Microscopic observations of the formation, growth and shrinkage of lithium moss during electrodeposition and dissolution. Electrochim Acta 136:529–536

    Article  CAS  Google Scholar 

  49. Morigaki K, Ohta A (1998) Analysis of the surface of lithium in organic electrolyte by atomic force microscopy, fourier transform infrared spectroscopy and scanning auger electron microscopy. J Power Sources 76:159–166

    Article  CAS  Google Scholar 

  50. Diggle JW, Despic AR, Bockris JO (1969) The mechanism of the dendritic electrocrystallization of zinc. J Electrochem Soc 116(11):1503

    Article  CAS  Google Scholar 

  51. Yamaki J, Tobishima S, Hayashi K, Saito K, Nemoto Y, Arakawa MA (1998) Consideration of the morphology of electrochemically deposited lithium in an organic electrolyte. J Power Sources 74:219–227

    Article  CAS  Google Scholar 

  52. Yamaki J-I, Tobishima S-I (2011) Rechargeable lithium anodes. In: Besenhard JO (ed) Handbook of battery materials, 2nd edn. Wiley-VCH Verlag GmbH & Co, Weinheim

    Google Scholar 

  53. Kim C-S, Jeong KM, Kim K, Yi C-W (2015) Effects of capacity ratios between anode and cathode on electrochemical properties for lithium polymer batteries. Electrochim Acta 155:431–436

    Article  CAS  Google Scholar 

  54. Purushothaman BK, Landau U (2006) Rapid charging of lithium-ion batteries using pulsed currents a theoretical analysis. J Electrochem Soc 153:A533–A542

    Article  CAS  Google Scholar 

  55. Jow RT, Xu K, Borodin O, Ue M (2014) Electrolytes for lithium and lithium-ion batteries, modern Asp. Springer, New York

    Book  Google Scholar 

  56. Krueger S, Kloepsch R, Li J, Nowak S, Passerini S, Winter M (2013) How do reactions at the anode/electrolyte interface determine the cathode performance in lithium-ion batteries? J Electrochem Soc 160(4):A542–A548

    Article  CAS  Google Scholar 

  57. Kawamura T, Okada S, Yamaki J (2006) Decomposition reaction of LiPF6-based electrolytes for lithium ion cells. J Power Sources 156(2):547–554

    Article  CAS  Google Scholar 

  58. Sloop SE, Pugh JK, Wang S, Kerr JB, Kinoshita K (2001) Chemical reactivity of PF[sub 5] and LiPF[sub 6] in ethylene carbonate/dimethyl carbonate solutions. Electrochem Solid State Lett 4(4):A42

    Article  CAS  Google Scholar 

  59. Campion CL, Li W, Lucht BL (2005) Thermal decomposition of LiPF[sub 6]-based electrolytes for lithium-ion batteries. J Electrochem Soc 152(12):A2327

    Article  CAS  Google Scholar 

  60. Zhang SS (2007) A review on the separators of liquid electrolyte li-ion batteries. J Power Sources 164:351–364

    Article  CAS  Google Scholar 

  61. Baginska M, Blaiszik BJ, Merriman RJ, Sottos NR, Moore JS, White SR (2012) Autonomic shutdown of lithium-ion batteries using thermoresponsive microspheres. Adv Energy Mater 2:583–590

    Article  CAS  Google Scholar 

  62. Love CT (2011) Thermomechanical analysis and durability of commercial micro-porous polymer Li-Ion battery separators. J Power Sources 196(5):2905–2912

    Article  CAS  Google Scholar 

  63. Norin L, Kostecki R, McLarnon F (2002) Study of membrane degradation in high-power lithium-ion cells. Electrochem Solid State Lett 5:A67

    Article  CAS  Google Scholar 

  64. Gallus DR, Schmitz R, Wagner R, Hoffmann B, Nowak S, Cekic-Laskovic I, Schmitz RW, Winter M (2014) The influence of different conducting salts on the metal dissolution and capacity fading of NCM cathode material. Electrochim Acta 134:393–398

    Article  CAS  Google Scholar 

  65. Zheng H, Sun Q, Liu G, Song X, Battaglia VS (2012) Correlation between dissolution behavior and electrochemical cycling performance for LiNi 1/3 Co 1/3 Mn 1/3 O2-based cells. J Power Sources 207:134–140

    Article  CAS  Google Scholar 

  66. Hunter JC (1981) Preparation of a new crystal form of manganese dioxide: λ-MnO2. J Solid State Chem 39:142–147

    Article  CAS  Google Scholar 

  67. Jang DH, Shin YJ, Oh SM (1996) Dissolution of spinel oxides and capacity losses in 4 V. J Electrochem Soc 143(7):2204–2211

    Article  CAS  Google Scholar 

  68. Aurbach D, Levi MD, Gamulski K, Markovsky B, Salitra G, Levi E, Heider U, Heider L, Oesten R (1999) Capacity fading of Li x Mn2O4 spinel electrodes studied by XRD and electroanalytical techniques. J Power Sources 81–82:472–479

    Article  Google Scholar 

  69. Yang K, Fan L-Z, Guo J, Qu X (2012) Significant improvement of electrochemical properties of AlF3-coated LiNi0.5Co0.2Mn0.3O2 cathode materials. Electrochim Acta 63:363–368

    Article  CAS  Google Scholar 

  70. Li GR, Feng X, Ding Y, Ye SH, Gao XP (2012) AlF3-coated Li(Li0.17Ni0.25Mn0.58)O2 as cathode material for Li-Ion batteries. Electrochim Acta 78:308–315

    Article  CAS  Google Scholar 

  71. Lee SH, Koo BK, Kim J-C, Kim KM (2008) Effect of Co3(PO4)2 coating on Li[Co0.1Ni0.15Li0.2Mn0.55]O2 cathode material for lithium rechargeable batteries. J Power Sources 184:276–283

    Article  CAS  Google Scholar 

  72. Chen Z, Qin Y, Amine K, Sun Y-K (2010) Role of surface coating on cathode materials for lithium-ion batteries. J Mater Chem 20:7606

    Article  CAS  Google Scholar 

  73. Martha SK, Sclar H, Szmuk Framowitz Z, Kovacheva D, Saliyski N, Gofer Y, Sharon P, Golik E, Markovsky B, Aurbach D (2009) A comparative study of electrodes comprising nanometric and submicron particles of LiNi0.50Mn0.50O2, LiNi0.33Mn0.33Co0.33O2, and LiNi0.40Mn0.40Co0.20O2 layered compounds. J Power Sources 189:248–255

    Article  CAS  Google Scholar 

  74. Jansen A, Kahaian A, Kepler K, Nelson P, Amine K, Dees D, Vissers D, Thackeray M (1999) Development of a high-power lithium-ion battery. J Power Sources 81–82:902–905

    Article  Google Scholar 

  75. Li J, Lewis RB, Dahn JR (2007) Sodium carboxymethyl cellulose. Electrochem Solid State Lett 10(2):A17

    Article  CAS  Google Scholar 

  76. Zhang WJ (2011) A Review of the electrochemical performance of alloy anodes for lithium-ion batteries. J Power Sources 196(1):13–24

    Article  CAS  Google Scholar 

  77. Buqa H, Holzapfel M, Krumeich F, Veit C, Novák P (2006) Study of styrene butadiene rubber and sodium methyl cellulose as binder for negative electrodes in lithium-ion batteries. J Power Sources 161:617–622

    Article  CAS  Google Scholar 

  78. Hochgatterer NS, Schweiger MR, Koller S, Raimann PR, Wöhrle T, Wurm C, Winter M (2008) Silicon/graphite composite electrodes for high-capacity anodes: influence of binder chemistry on cycling stability. Electrochem Solid-State Lett 11(5):A76

    Article  CAS  Google Scholar 

  79. Xu J, Chou S-L, Gu Q, Liu H-K, Dou S-X (2013) The effect of different binders on electrochemical properties of LiNi1/3Mn1/3Co1/3O2 cathode material in lithium ion batteries. J Power Sources 225:172–178

    Article  CAS  Google Scholar 

  80. Manickam M, Takata M (2003) Effect of cathode binder on capacity retention and cycle life in transition metal phosphate of a rechargeable lithium battery. Electrochim Acta 48(8):957–963

    Article  CAS  Google Scholar 

  81. Chen Z, Chevrier V, Christensen L, Dahn JR (2004) Design of amorphous alloy electrodes for Li-Ion batteries. Electrochem Solid State Lett 7(10):A310

    Article  CAS  Google Scholar 

  82. Liu W-R, Yang M-H, Wu H-C, Chiao SM, Wu N-L (2005) Enhanced cycle life of Si anode for Li-Ion batteries by using modified elastomeric binder. Electrochem Solid State Lett 8(2):A100

    Article  CAS  Google Scholar 

  83. Markevich E, Salitra G, Aurbach D (2005) Influence of the PVdF binder on the stability of LiCoO2 electrodes. Electrochem Commun 7(12):1298–1304

    Article  CAS  Google Scholar 

  84. Aurbach D, Markovsky B, Salitra G, Markevich E, Talyossef Y, Koltypin M, Nazar L, Ellis B, Kovacheva D (2007) Review on electrode–electrolyte solution interactions, related to cathode materials for Li-Ion batteries. J Power Sources 165:491–499

    Article  CAS  Google Scholar 

  85. Lee J-H, Paik U, Hackley VA, Choi Y-M (2005) Effect of carboxymethyl cellulose on aqueous processing of natural graphite negative electrodes and their electrochemical performance for lithium batteries. J Electrochem Soc 152(9):A1763

    Article  CAS  Google Scholar 

  86. Choi Y-M, Paik U, Kim K-H (2003) Application No. P2003-0040085

  87. Spotnitz R, Franklin J (2003) Abuse behavior of high-power, lithium-ion cells. J Power Sources 113:81–100

    Article  CAS  Google Scholar 

  88. Li G (1996) The influence of polytetrafluorethylene reduction on the capacity loss of the carbon anode for lithium ion batteries. Solid State Ion 90:221–225

    Article  CAS  Google Scholar 

  89. Maleki H, Deng G, Kerzhner-Haller I (2000) Thermal stability studies of binder materials in anodes for lithium ion batteries. J Electrochem Soc 147(12):4470–4475

    Article  CAS  Google Scholar 

  90. Buqa H, Goers D, Spahr ME, Novak P (2003) The influence of graphite surface modification on the exfoliation during electrochemical lithium insertion. J Solid State Electrochem 8(1):79–80

    Article  CAS  Google Scholar 

  91. Zackrisson M, Avellán L, Orlenius J (2010) Life cycle assessment of lithium-ion batteries for plug-in hybrid electric vehicles-critical issues. J Clean Prod 18(15):1517–1527

    Article  CAS  Google Scholar 

  92. Kim GT, Jeong SS, Joost M, Rocca E, Winter M, Passerini S, Balducci A (2011) Use of natural binders and ionic liquid electrolytes for greener and safer lithium-ion batteries. J Power Sources 196(4):2187–2194

    Article  CAS  Google Scholar 

  93. Saeki S, Lee J, Zhang Q, Saito F (2004) Co-Grinding LiCoO2 with PVC and water leaching of metal chlorides formed in ground product. Int J Miner Process 74:S373–S378

    Article  CAS  Google Scholar 

  94. Li C-C, Lee J-T, Tung Y-L, Yang C-R (2007) Effects of pH on the dispersion and cell performance of LiCoO2 cathodes based on the aqueous process. J Mater Sci 42(14):5773–5777

    Article  CAS  Google Scholar 

  95. Chou S-L, Pan Y, Wang J-Z, Liu H-K, Dou S-X (2014) Small things make a big difference: binder effects on the performance of Li and Na batteries. Phys Chem Chem Phys 16(38):20347–20359

    Article  CAS  Google Scholar 

  96. Guerfi A, Kaneko M, Petitclerc M, Mori M, Zaghib K (2007) LiFePO4 water-soluble binder electrode for li-ion batteries. J Power Sources 163(2):1047–1052

    Article  CAS  Google Scholar 

  97. Porcher W, Lestriez B, Jouanneau S, Guyomard D (2009) Design of aqueous processed thick LiFePO[sub 4] composite electrodes for high-energy lithium battery. J Electrochem Soc 156(3):A133

    Article  CAS  Google Scholar 

  98. Li J, Murphy E, Winnick J, Kohl PA (2001) Studies on the cycle life of commercial lithium ion batteries during rapid charge-discharge cycling. J Power Sources 102:294–301

    Article  CAS  Google Scholar 

  99. Chen D, Indris S, Schulz M, Gamer B, Mönig R (2011) In situ scanning electron microscopy on lithium-ion battery electrodes using an ionic liquid. J Power Sources 196(15):6382–6387

    Article  CAS  Google Scholar 

  100. Kızıltaş-Yavuz N, Herklotz M, Hashem AM, Abuzeid HM, Schwarz B, Ehrenberg H, Mauger A, Julien CM (2013) Synthesis, structural, magnetic and electrochemical properties of LiNi1/3Mn1/3Co1/3O2 Prepared by a sol–gel method using table sugar as chelating agent. Electrochim Acta 113:313–321

    Article  CAS  Google Scholar 

  101. Park M, Zhang X, Chung M, Less GB, Sastry AM (2010) A review of conduction phenomena in Li-Ion batteries. J Power Sources 195(24):7904–7929

    Article  CAS  Google Scholar 

  102. Amin R, Ravnsbæk DB, Chiang Y-M (2015) Characterization of electronic and ionic transport in Li1−x Ni0.8Co0.15Al0.05O2 (NCA). J Electrochem Soc 162(7):A1163–A1169

    Article  CAS  Google Scholar 

  103. Nobili F, Croce F, Scrosati B, Marassi R (2001) Electronic and electrochemical properties of Li x Ni1−y Co y O2 cathodes studied by impedance spectroscopy. Chem Mater 13:1642–1646

    Article  CAS  Google Scholar 

  104. Kleiner K, Dixon D, Jakes P, Melke J, Murat Y, Roth C, Nikolowski K, Liebau V, Ehrenberg H (2015) Fatigue of LiNi0.8Co0.15Al0.05O2 in commercial Li ion batteries. J Power Sources 273:70–82

    Article  CAS  Google Scholar 

  105. Xiao J, Yu X, Zheng J, Zhou Y, Gao F, Chen X, Bai J, Yang XQ, Zhang JG (2013) Interplay between two-phase and solid solution reactions in high voltage spinel cathode material for lithium ion batteries. J Power Sources 242:736–741

    Article  CAS  Google Scholar 

  106. Senyshyn A, Mühlbauer MJ, Nikolowski K, Pirling T, Ehrenberg H (2012) “In-operando” neutron scattering studies on Li-Ion batteries. J Power Sources 203:126–129

    Article  CAS  Google Scholar 

  107. Padhi A, Nanjundaswamya K, Goodenough J (1997) Phospho-Olivines as positive-electrode materials for rechargeable lithium batteries. J Electrochem Soc 144:1188–1194

    Article  CAS  Google Scholar 

  108. Brunetti G, Robert D, Bayle-Guillemaud P, Rouvière JL, Rauch EF, Martin JF, Colin JF, Bertin F, Cayron C (2011) Confirmation of the Domino-Cascade model by lifepo4/fepo 4 precession electron diffraction. Chem Mater 23:4515–4524

    Article  CAS  Google Scholar 

  109. Manthiram A, Sivaramakrishnan V (2001) Chemical and structural instabilities of LiCoO2 cathodes at deep lithium extraction. Materials science and engineering program, ETC 9.104, Austin

  110. Arunkumar TA, Alvarez E, Manthiram A (2008) Chemical and structural instability of the chemically delithiated (1−Z) Li Li1/3Mn2/3 O-2 center dot(z) Li Co1−y Ni y O-2 (0 ≤ Y ≤ 1 and 0 ≤ Z ≤ 1) Solid Solution Cathodes. J Mater Chem 18:190–198

    Article  CAS  Google Scholar 

  111. Reimers JN, Dahn JR (1992) Electrochemical and in situ X-ray diffraction studies of lithium intercalation in Li x CoO2. J Electroanal Chem 139(8):2–8

    Google Scholar 

  112. Ohzuku T, Ueda A, Nagayama M (1993) electrochemistry and structural chemistry of LiNi02 (R3 m) for 4 volt secondary lithium cells. 140(7):1862–1870

  113. Ohzuku T, Ueda A, Kouguchi M (1995) Synthesis and characterization of LiAl1/4Ni3/4O2 (R-3m) for lithium-ion (shuttlecock) batteries. J Electrochem Soc 142(12):4033–4039

    Article  CAS  Google Scholar 

  114. Choi S, Manthiram A (2002) Factors influencing the layered to spinel-like phase transition in layered oxide cathodes. J Electrochem Soc 149:A1157

    Article  CAS  Google Scholar 

  115. Kang S (2002) Layered Li(Ni0.5−x Mn0.5−x M2x′)O2 (M′ = Co, Al, Ti; x = 0, 0.025) cathode materials for Li-Ion rechargeable batteries. J Power Sources 112(1):41–48

    Article  CAS  Google Scholar 

  116. Jiang M, Key B, Meng YS, Grey CP (2009) Electrochemical and structural study of the layered, “Li-excess” lithium-ion battery electrode material Li[Li1/9Ni1/3Mn5/9]O2. Chem Mater 21(13):2733–2745

    Article  CAS  Google Scholar 

  117. Hong J, Gwon H, Jung S-K, Ku K, Kang K (2015) Review—lithium-excess layered cathodes for lithium rechargeable batteries. J Electrochem Soc 162(14):A2447–A2467

    Article  CAS  Google Scholar 

  118. Chebiam RV, Prado F, Manthiram A (2001) Soft chemistry synthesis and characterization of layered Li1−x Ni1−Y Co Y O2−δ (0 <= x <= 1 and 0 <= y <= 1). Chem Mater 5:2951–2957

    Article  CAS  Google Scholar 

  119. Yoon W-S, Chung KY, McBreen J, Fischer DA, Yang X-Q (2007) electronic structural changes of the electrochemically Li-Ion Deintercalated LiNi0.8Co0.15Al0.05O2 cathode material investigated by X-ray absorption spectroscopy. J Power Sources 174(2):1015–1020

    Article  CAS  Google Scholar 

  120. Montoro L, Abbate M, Almeida E, Rosolen J (1999) Electronic structure of the transition metal ions in LiCoO2, LiNiO2 and LiCo0.5Ni0.5O2. Chem Phys Lett 309(1–2):14–18

    Article  CAS  Google Scholar 

  121. Senyshyn A, Dolotko O, Muhlbauer MJ, Nikolowski K, Fuess H, Ehrenberg H (2013) Lithium intercalation into graphitic carbons revisited: experimental evidence for twisted bilayer behavior. J Electrochem Soc 160(5):A3198–A3205

    Article  CAS  Google Scholar 

  122. Levi MD, Wang C, Markevich E, Aurbach D, Chvoj Z (2003) Noteworthy electroanalytical features of the stage 4 to stage 3 phase transition in lithiated graphite. J Solid State Electrochem 8(1):40–43

    Article  CAS  Google Scholar 

  123. Ohzuku T, Kitagawa M, Hitai T (1990) Electrochemistry of manganese dioxide in lithium nonaqueous Cell II. X-ray diffractional and electrochemical characterization on deep discharge products of electrolytic manganese dioxide. J Electrochem Soc 137(3):40–46

    Article  CAS  Google Scholar 

  124. Shao-horn Y, Hackney SA, Kahaian AJ, Kepler KD, Skinner E, Vaughey JT, Thackeray MM (1999) Structural fatigue in spinel electrodes in Li R Li X W Mn 2 X O 4 cells. J Power Sources 81–82:496–499

    Article  Google Scholar 

  125. Aurbach D, Levi M, Gamulski K, Markovsky B, Salitra G, Levi E, Heider U, Heider L, Oesten R (1999) Capacity fading of Li x Mn2O4 spinel electrodes studied by XRD and electroanalytical techniques. J Power Sources 81–82:472–479

    Article  Google Scholar 

  126. Chung KY, Kim KB (2004) Investigations into capacity fading as a result of a Jahn-Teller distortion in 4 V LiMn2O4 thin film electrodes. Electrochim Acta 49:3327–3337

    Article  CAS  Google Scholar 

  127. Ikeno H, de Groot FMF, Stavitski E, Tanaka I (2009) Multiplet calculations of L(2,3) X-Ray absorption near-edge structures for 3d transition-metal compounds. J Phys Condens Matter 21(10):104208

    Article  CAS  Google Scholar 

  128. Tran N, Croguennec L, Menetrier M, Weill F, Biensan P, Jordy C, Delmas C (2008) Mechanisms associated with the “Plateau” observed at high voltage for the overlithiated Li-1.12(Ni0.425Mn0.425Co0.15)(0.88)O-2 system. Chem Mater 20(6):4815–4825

    Article  CAS  Google Scholar 

  129. Wohlfahrt-Mehrens M, Butz A, Oesten R, Arnold G, Hemmer RP, Huggins RA (1997) The influence of doping on the operation of lithium manganese oxide spinel. J Power Sources 68(2):582–585

    Article  CAS  Google Scholar 

  130. Guao Y, Dahn JR (1996) Synthesis and characterization of Li1 + Mn2O4 for Li-Ion battery applications. J Electrochem Soc 143(1):100–114

    Article  Google Scholar 

  131. Rozier P, Tarascon JM (2015) Review—Li-Rich layered oxide cathodes for next-generation Li-Ion batteries: chances and challenges. J Electrochem Soc 162(14):A2490–A2499

    Article  CAS  Google Scholar 

  132. Montoro LA, Rosolen JM (2004) The role of structural and electronic alterations on the lithium diffusion in Li x Co0.5Ni0.5O2. Electrochim Acta 49(19):3243–3249

    Article  CAS  Google Scholar 

  133. Yoon W, Kim K, Kim M, Lee M, Shin H, Lee J, Lee J (2002) Oxygen contribution on Li-Ion intercalation—deintercalation in LiCoO2 investigated by O K-edge and Co L-edge X-ray absorption spectroscopy. J Phys Chem B 106:2526–2532

    Article  CAS  Google Scholar 

  134. Kobayashi H, Arachi Y, Emura S, Tatsumi K (2007) Investigation on lithium de-intercalation mechanism for LiNi0.45Mn0.45Al0.1O2. Solid State Ion 178:1101–1105

    Article  CAS  Google Scholar 

  135. Van der Ven A, Ceder G (2000) Lithium diffusion mechanisms in layered intercalation compounds. J Power Sources 97–98:529–531

    Google Scholar 

  136. Moses AW, Flores HGG, Kim J-G, Langell MA (2007) Surface properties of LiCoO2, LiNiO2 and LiNi1−x Co x O2. Appl Surf Sci 253:4782–4791

    Article  CAS  Google Scholar 

  137. Han CJ, Yoon JH, Cho WL, Jang H (2004) Electrochemical properties of LiNi0.8Co0.2−x Al x O2 prepared by a sol–gel method. J Power Sources 136(1):132–138

    Article  CAS  Google Scholar 

  138. Yang XQ, Sun X, McBreen J (1999) New findings on the phase transitions in Li1−x NiO2: in situ synchrotron X-ray diffraction studies. Electrochem Commun 1(6):227–232

    Article  Google Scholar 

  139. Saito Y, Shikano M, Kobayashi H (2011) State of charge (SOC) dependence of lithium carbonate on LiNi0.8Co0.15Al0.05O2 electrode for lithium-ion batteries. J Power Sources 196(16):6889–6892

    Article  CAS  Google Scholar 

  140. Shannon RD (1976) Revised effective ionic radii and systematic studies of interatomie distances in halides and chaleogenides. Acta Cryst A32:751–767

    Article  CAS  Google Scholar 

  141. Maier J (ed) (2000) Festkörper-Fehler Und Funktion. Teubner Studienbücher, Leipzig

    Google Scholar 

  142. Amalraj F, Talianker M, Markovsky B, Sharon D, Burlaka L, Shafir G, Zinigrad E, Haik O, Aurbach D, Lampert J, Schulz-Dobrick M, Garsuch A (2012) Study of the lithium-rich integrated compound x Li2MnO3(1−x)LiMO2 (X around 0.5; M = Mn, Ni, Co; 2:2:1) and its electrochemical activity as positive electrode in lithium cells. J Electrochem Soc 160(2):A324–A337

    Article  CAS  Google Scholar 

  143. Chanson C, Wiaux J-P (2013) Safety of lithium-ion batteries. The European Association for advanced rechargeable batteries. Belgium, Brussels, p 25

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Karin Kleiner.

Additional information

This article is part of the Topical Collection “Electrochemical Energy Storage”, edited by Rüdiger A. Eichel.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kleiner, K., Ehrenberg, H. Challenges Considering the Degradation of Cell Components in Commercial Lithium-Ion Cells: A Review and Evaluation of Present Systems. Top Curr Chem (Z) 375, 54 (2017). https://doi.org/10.1007/s41061-017-0139-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s41061-017-0139-2

Keywords

Navigation