Skip to main content
Log in

Polymer–Nucleic Acid Interactions

  • Review
  • Published:
Topics in Current Chemistry Aims and scope Submit manuscript

Abstract

Gene therapy is an important therapeutic strategy in the treatment of a wide range of genetic disorders. Polymers forming stable complexes with nucleic acids (NAs) are non-viral gene carriers. The self-assembly of polymers and nucleic acids is typically a complex process that involves many types of interaction at different scales. Electrostatic interaction, hydrophobic interaction, and hydrogen bonds are three important and prevalent interactions in the polymer/nucleic acid system. Electrostatic interactions and hydrogen bonds are the main driving forces for the condensation of nucleic acids, while hydrophobic interactions play a significant role in the cellular uptake and endosomal escape of polymer-nucleic acid complexes. To design high-efficiency polymer candidates for the DNA and siRNA delivery, it is necessary to have a detailed understanding of the interactions between them in solution. In this chapter, we survey the roles of the three important interactions between polymers and nucleic acids during the formation of polyplexes and summarize recent understandings of the linear polyelectrolyte–NA interactions and dendrimer–NA interactions. We also review recent progress optimizing the gene delivery system by tuning these interactions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Reprinted with permission from references [60]. Copyright 2016 American Chemical Society

Fig. 7

Reprinted with permission from references [67]

Fig. 8
Fig. 9

Reprinted with permission from references [81]. Copyright 2013 American Chemical Society

Fig. 10

Reprinted with permission from references [89]

Fig. 11

Reprinted with permission from references [106]

Similar content being viewed by others

Abbreviations

Dendriplex:

Dendrimer-nucleic acid complex

DNA:

Deoxyribonucleic acid

DH:

Debye–Huckel

DPLL:

Dendritic poly-l-lysine

LP:

Linear polymer or linear polycations

LPEI:

Linear polyethylenimine

MD:

Molecular dynamics

NA:

Nucleic acid

PAMAM:

Polyamidoamine

PB:

Poisson-boltzmann

pDNA:

Plasmid deoxyribonucleic acid

PEI:

Polyethylenimine

PLL:

Poly-l-lysine

PPI:

Polypropyleneine

Polyplex:

Polymer-nucleic acid complex

PrA:

Propionic acid

RNA:

Ribonucleic acid

siRNA:

Small interfering RNA

References

  1. Putnam D (2006) Polymers for gene delivery across length scales. Nat Mater 5:439–451

    Article  CAS  Google Scholar 

  2. Wong SY, Pelet JM, Putnam D (2007) Polymer systems for gene delivery—past, present, and future. Prog Polym Sci 32:799–837

    Article  CAS  Google Scholar 

  3. Angell C, Xie S, Zhang L, Chen Y (2016) DNA nanotechnology for precise control over drug delivery and gene therapy. Small 12:1117–1132

    Article  CAS  Google Scholar 

  4. He D, Wagner E (2015) Defined polymeric materials for gene delivery. Macromol Biosci 15:600–612

    Article  CAS  Google Scholar 

  5. Yang J, Liu H, Zhang X (2014) Design, preparation and application of nucleic acid delivery carriers. Biotechnol Adv 32:804–817

    Article  CAS  Google Scholar 

  6. Pack DW, Hoffman AS, Pun S, Stayton PS (2005) Design and development of polymers for gene delivery. Nat Rev Drug Discov 4:581–593

    Article  CAS  Google Scholar 

  7. Godbey WT, Wu KK, Mikos AG (1999) Poly(ethylenimine) and its role in gene delivery. J Controll Release 60:149–160

    Article  CAS  Google Scholar 

  8. Nguyen J, Szoka FC (2012) Nucleic acid delivery: the missing pieces of the puzzle? Acc Chem Res 45:1153–1162

    Article  CAS  Google Scholar 

  9. Bielinska AU, Chen C, Johnson J, Baker JR (1999) DNA complexing with polyamidoamine dendrimers: implications for transfection. Bioconjug Chem 10:843–850

    Article  CAS  Google Scholar 

  10. Thomas M, Klibanov AM (2003) Non-viral gene therapy: polycation-mediated DNA delivery. Appl Microbiol Biotechnol 62:27–34

    Article  CAS  Google Scholar 

  11. Ibraheem D, Elaissari A, Fessi H (2014) Gene therapy and DNA delivery systems. Int J Pharm 459:70–83

    Article  CAS  Google Scholar 

  12. Canine BF, Hatefi A (2010) Development of recombinant cationic polymers for gene therapy research. Adv Drug Deliv Rev 62:1524–1529

    Article  CAS  Google Scholar 

  13. Tian W, Ma Y (2012) Theoretical and computational studies of dendrimers as delivery vectors. Chem Soc Rev 42:705–727

    Article  Google Scholar 

  14. Yin H, Kanasty RL, Eltoukhy AA, Vegas AJ, Dorkin JR, Anderson DG (2014) Non-viral vectors for gene-based therapy. Nat Rev Genet 15:541–555

    Article  CAS  Google Scholar 

  15. Grant EV, Thomas M, Fortune J, Klibanov AM, Letvin NL (2012) Enhancement of plasmid DNA immunogenicity with linear polyethylenimine. Eur J Immunol 42:2937–2948

    Article  CAS  Google Scholar 

  16. Braun CS, Vetro JA, Tomalia DA, Koe GS, Koe JG, Russell Middaugh C (2005) Structure/function relationships of polyamidoamine/DNA dendrimers as gene delivery vehicles. J Pharm Sci 94:423–436

    Article  CAS  Google Scholar 

  17. Patil SD, Rhodes DG, Burgess DJ (2005) DNA-based therapeutics and DNA delivery systems: a comprehensive review. AAPS J 7:E61–E77

    Article  CAS  Google Scholar 

  18. Lächelt U, Wagner E (2015) Nucleic acid therapeutics using polyplexes: a journey of 50 years (and beyond). Chem Rev 115:11043–11078

    Article  CAS  Google Scholar 

  19. Dias RS (2008) Solution behavior of nucleic acids. In: Dias R, Lindman B (eds) DNA interactions with polymers and surfactants. John Wiley, Hoboken, pp 41–57

    Chapter  Google Scholar 

  20. Chou S-T, Hom K, Zhang D et al (2014) Enhanced silencing and stabilization of siRNA polyplexes by histidine-mediated hydrogen bonds. Biomaterials 35:846–855

    Article  CAS  Google Scholar 

  21. Shen W, Liu H, Ling-Hu Y, Wang H, Cheng Y (2016) Enhanced siRNA delivery of a cyclododecylated dendrimer compared to its linear derivative. J Mater Chem B 4:5654–5658

    Article  CAS  Google Scholar 

  22. Cheng Y, Liu H, Chang H, Lv J (2016) Screening efficient siRNA vectors in a library of surface-engineered dendrimers. Nanomedicine Nanotechnol Biol Med 12:549

    Article  Google Scholar 

  23. Dominska M, Dykxhoorn DM (2010) Breaking down the barriers: siRNA delivery and endosome escape. J Cell Sci 123:1183–1189

    Article  CAS  Google Scholar 

  24. Sim AYL (2016) Nucleic acid polymeric properties and electrostatics: directly comparing theory and simulation with experiment. Adv Colloid Interface Sci 232:49–56

    Article  CAS  Google Scholar 

  25. Lipfert J, Doniach S, Das R, Herschlag D (2014) Understanding nucleic acid–ion interactions. Annu Rev Biochem 83:813–841

    Article  CAS  Google Scholar 

  26. Dai L, Mu Y, Nordenskiöld L, van der Maarel JRC (2008) Molecular dynamics simulation of multivalent-ion mediated attraction between DNA molecules. Phys Rev Lett 100:118301

    Article  CAS  Google Scholar 

  27. Acharya H, Vembanur S, Jamadagni SN, Garde S (2010) Mapping hydrophobicity at the nanoscale: applications to heterogeneous surfaces and proteins. Faraday Discuss 146:353–365

    Article  CAS  Google Scholar 

  28. Chandler D (2005) Interfaces and the driving force of hydrophobic assembly. Nature 437:640–647

    Article  CAS  Google Scholar 

  29. Godawat R, Jamadagni SN, Garde S (2009) Characterizing hydrophobicity of interfaces by using cavity formation, solute binding, and water correlations. Proc Natl Acad Sci 106:15119–15124

    Article  CAS  Google Scholar 

  30. Hammer MU, Anderson TH, Chaimovich A, Shell MS, Israelachvili J (2010) The search for the hydrophobic force law. Faraday Discuss 146:299–308

    Article  CAS  Google Scholar 

  31. Pratt LR, Chaudhari MI, Rempe SB (2016) Statistical analyses of hydrophobic interactions: a mini-review. J Phys Chem B 120:6455–6460

    Article  CAS  Google Scholar 

  32. Sarupria S, Garde S (2009) Quantifying water density fluctuations and compressibility of hydration shells of hydrophobic solutes and proteins. Phys Rev Lett 103:037803

    Article  CAS  Google Scholar 

  33. Shih AJ, Telesco SE, Choi S-H, Lemmon MA, Radhakrishnan R (2011) Molecular dynamics analysis of conserved hydrophobic and hydrophilic bond-interaction networks in erbb family kinases. Biochem J 436:241–251

    Article  CAS  Google Scholar 

  34. Arunan E, Desiraju GR, Klein RA et al (2011) Definition of the hydrogen bond (iupac recommendations 2011). Pure Appl Chem 83:1637–1641

    CAS  Google Scholar 

  35. Preat J, Zanuy D, Perpète EA, Alemán C (2011) Binding of cationic conjugated polymers to DNA: atomistic simulations of adducts involving the dickerson’s dodecamer. Biomacromol 12:1298–1304

    Article  CAS  Google Scholar 

  36. Hao M-H (2006) Theoretical calculation of hydrogen-bonding strength for drug molecules. J Chem Theory Comput 2:863–872

    Article  CAS  Google Scholar 

  37. Nocker M, Handschuh S, Tautermann C, Liedl KR (2009) Theoretical prediction of hydrogen bond strength for use in molecular modeling. J Chem Inf Model 49:2067–2076

    Article  CAS  Google Scholar 

  38. Paton RS, Goodman JM (2009) Hydrogen bonding and π-stacking: how reliable are force fields? a critical evaluation of force field descriptions of nonbonded interactions. J Chem Inf Model 49:944–955

    Article  CAS  Google Scholar 

  39. Alemán C, Teixeira-Dias B, Zanuy D, Estrany F, Armelin E, del Valle LJ (2009) A comprehensive study of the interactions between DNA and poly(3,4-ethylenedioxythiophene). Polymer 50:1965–1974

    Article  CAS  Google Scholar 

  40. Prevette LE, Kodger TE, Reineke TM, Lynch ML (2007) Deciphering the role of hydrogen bonding in enhancing pDNA–polycation interactions. Langmuir 23:9773–9784

    Article  CAS  Google Scholar 

  41. Allen MH, Green MD, Getaneh HK, Miller KM, Long TE (2011) Tailoring charge density and hydrogen bonding of imidazolium copolymers for efficient gene delivery. Biomacromol 12:2243–2250

    Article  CAS  Google Scholar 

  42. Zanuy D, Alemán C (2008) DNA-conducting polymer complexes: a computational study of the hydrogen bond between building blocks. J Phys Chem B 112:3222–3230

    Article  CAS  Google Scholar 

  43. Cao ZQ, Liu WG, Liang DC, Guo G, Zhang JY (2007) Design of poly(vinyldiaminotriazine)-based nonviral vectors via specific hydrogen bonding with nucleic acid base pairs. Adv Funct Mater 17:246–252

    Article  CAS  Google Scholar 

  44. Gilli G, Gilli P (2000) Towards an unified hydrogen-bond theory. J Mol Struct 552:1–15

    Article  CAS  Google Scholar 

  45. Li Y, Tian H, Ding J, Dong X, Chen J, Chen X (2014) Thiourea modified polyethylenimine for efficient gene delivery mediated by the combination of electrostatic interactions and hydrogen bonds. Polym Chem 5:3598–3607

    Article  CAS  Google Scholar 

  46. Rinkenauer AC, Schubert S, Traeger A, Schubert US (2015) The influence of polymer architecture on in vitro pDNA transfection. J Mater Chem B 3:7477–7493

    Article  CAS  Google Scholar 

  47. Kircheis R, Wightman L, Wagner E (2001) Design and gene delivery activity of modified polyethylenimines. Adv Drug Deliv Rev 53:341–358

    Article  CAS  Google Scholar 

  48. Kou X, Zhang W, Zhang W (2016) Quantifying the interactions between PEI and double-stranded DNA: toward the understanding of the role of PEI in gene delivery. ACS Appl Mater Interfaces 8:21055–21062

    Article  CAS  Google Scholar 

  49. Elder RM, Jayaraman A (2013) Molecular simulations of polycation–DNA binding exploring the effect of peptide chemistry and sequence in nuclear localization sequence based polycations. J Phys Chem B 117:11988–11999

    Article  CAS  Google Scholar 

  50. Ziebarth J, Wang Y (2009) Molecular dynamics simulations of DNA-polycation complex formation. Biophys J 97:1971–1983

    Article  CAS  Google Scholar 

  51. Sun C, Tang T, Uludağ H, Cuervo JE (2011) Molecular dynamics simulations of DNA/PEI complexes: effect of PEI branching and protonation state. Biophys J 100:2754–2763

    Article  CAS  Google Scholar 

  52. Sun C, Tang T (2014) Study on the role of polyethylenimine as gene delivery carrier using molecular dynamics simulations. J Adhes Sci Technol 28:399–416

    Article  CAS  Google Scholar 

  53. Sun C, Tang T, Uludağ H (2011) Molecular dynamics simulations of PEI mediated DNA aggregation. Biomacromol 12:3698–3707

    Article  CAS  Google Scholar 

  54. Bagai S, Sun C, Tang T (2013) Potential of mean force of polyethylenimine-mediated DNA attraction. J Phys Chem B 117:49–56

    Article  CAS  Google Scholar 

  55. Kwok A, Hart SL (2011) Comparative structural and functional studies of nanoparticle formulations for DNA and siRNA delivery. Nanomedicine Nanotechnol Biol Med 7:210–219

    Article  CAS  Google Scholar 

  56. Ziebarth JD, Kennetz DR, Walker NJ, Wang Y (2017) Structural comparisons of PEI/DNA and PEI/siRNA complexes revealed with molecular dynamics simulations. J Phys Chem B 121:1941–1952

  57. Ouyang D, Zhang H, Parekh HS, Smith SC (2010) Structure and dynamics of multiple cationic vectors–siRNA complexation by all-atomic molecular dynamics simulations. J Phys Chem B 114:9231–9237

    Article  CAS  Google Scholar 

  58. Ouyang D, Zhang H, Herten D-P, Parekh HS, Smith SC (2010) Structure, dynamics, and energetics of siRNA-cationic vector complexation: a molecular dynamics study. J Phys Chem B 114:9220–9230

    Article  CAS  Google Scholar 

  59. Meneksedag-Erol D, Kc RB, Tang T, Uludağ H (2015) A delicate balance when substituting a small hydrophobe onto low molecular weight polyethylenimine to improve its nucleic acid delivery efficiency. ACS Appl Mater Interfaces 7:24822–24832

    Article  CAS  Google Scholar 

  60. Kondinskaia DA, Kostritskii AY, Nesterenko AM, Antipina AY, Gurtovenko AA (2016) Atomic-scale molecular dynamics simulations of DNA–polycation complexes: two distinct binding patterns. J Phys Chem B 120:6546–6554

    Article  CAS  Google Scholar 

  61. Sun C, Tang T, Uludag H (2013) A molecular dynamics simulation study on the effect of lipid substitution on polyethylenimine mediated siRNA complexation. Biomaterials 34:2822–2833

    Article  CAS  Google Scholar 

  62. Sun C, Tang T, Uludağ H (2012) Probing the effects of lipid substitution on polycation mediated DNA aggregation: a molecular dynamics simulations study. Biomacromol 13:2982–2988

    Article  CAS  Google Scholar 

  63. Zhan B, Shi K, Dong Z, Lv W, Zhao S, Han X, Wang H, Liu H (2015) Coarse-grained simulation of polycation/DNA-like complexes: role of neutral block. Mol Pharm 12:2834–2844

    Article  CAS  Google Scholar 

  64. Benjaminsen RV, Mattebjerg MA, Henriksen JR, Moghimi SM, Andresen TL (2013) The possible “proton sponge” effect of polyethylenimine (PEI) does not include change in lysosomal pH. Mol Ther 21:149–157

    Article  CAS  Google Scholar 

  65. Meneksedag-Erol D, Tang T, Uludağ H (2015) Probing the effect of miRNA on siRNA–PEI polyplexes. J Phys Chem B 119:5475–5486

    Article  CAS  Google Scholar 

  66. Yin L, Tang H, Kim KH, Zheng N, Song Z, Gabrielson NP, Lu H, Cheng J (2013) Light-responsive helical polypeptides capable of reducing toxicity and unpacking DNA: toward nonviral gene delivery. Angew Chem Int Ed 52:9182–9186

    Article  CAS  Google Scholar 

  67. Yuan Y, Zhang C-J, Liu B (2015) A photoactivatable aie polymer for light-controlled gene delivery: concurrent endo/lysosomal escape and DNA unpacking. Angew Chem Int Ed 54:11419–11423

    Article  CAS  Google Scholar 

  68. Caminade A-M, Turrin C-O, Majoral J-P (2008) Dendrimers and DNA: combinations of two special topologies for nanomaterials and biology. Chem Eur J 14:7422–7432

    Article  CAS  Google Scholar 

  69. Cheng Y, Xu Z, Ma M, Xu T (2008) Dendrimers as drug carriers: applications in different routes of drug administration. J Pharm Sci 97:123–143

    Article  CAS  Google Scholar 

  70. Astruc D, Boisselier E, Ornelas C (2010) Dendrimers designed for functions: from physical, photophysical, and supramolecular properties to applications in sensing, catalysis, molecular electronics, photonics, and nanomedicine. Chem Rev 110:1857–1959

    Article  CAS  Google Scholar 

  71. Guillot-Nieckowski M, Eisler S, Diederich F (2007) Dendritic vectors for gene transfection. New J Chem 31:1111–1127

    Article  CAS  Google Scholar 

  72. Lee CC, MacKay JA, Fréchet JMJ, Szoka FC (2005) Designing dendrimers for biological applications. Nat Biotechnol 23:1517–1526

    Article  CAS  Google Scholar 

  73. Dufès C, Uchegbu IF, Schätzlein AG (2005) Dendrimers in gene delivery. Adv Drug Deliv Rev 57:2177–2202

    Article  CAS  Google Scholar 

  74. Tomalia DA (2012) Dendritic effects: dependency of dendritic nano-periodic property patterns on critical nanoscale design parameters (cndps). New J Chem 36:264–281

    Article  CAS  Google Scholar 

  75. Chaplot SP, Rupenthal ID (2014) Dendrimers for gene delivery—a potential approach for ocular therapy? J Pharm Pharmacol 66:542–556

    Article  CAS  Google Scholar 

  76. Tomalia DA, Baker H, Dewald J, Hall M, Kallos G, Martin S, Roeck J, Ryder J, Smith P (1985) A new class of polymers: starburst-dendritic macromolecules. Polym J 17:117–132

    Article  CAS  Google Scholar 

  77. Tomalia DA, Fréchet JMJ (2002) Discovery of dendrimers and dendritic polymers: a brief historical perspective. J Polym Sci Part Polym Chem 40:2719–2728

    Article  CAS  Google Scholar 

  78. Roques C, Bouchemal K, Ponchel G, Fromes Y, Fattal E (2009) Parameters affecting organization and transfection efficiency of amphiphilic copolymers/DNA carriers. J Controll Release 138:71–77

    Article  CAS  Google Scholar 

  79. Kannan RM, Nance E, Kannan S, Tomalia DA (2014) Emerging concepts in dendrimer-based nanomedicine: from design principles to clinical applications. J Intern Med 276:579–617

    Article  CAS  Google Scholar 

  80. Nandy B, Maiti PK (2011) DNA compaction by a dendrimer. J Phys Chem B 115:217–230

    Article  CAS  Google Scholar 

  81. Nandy B, Maiti PK, Bunker A (2013) Force biased molecular dynamics simulation study of effect of dendrimer generation on interaction with DNA. J Chem Theory Comput 9:722–729

    Article  CAS  Google Scholar 

  82. Karatasos K, Posocco P, Laurini E, Pricl S (2012) Poly(amidoamine)-based dendrimer/siRNA complexation studied by computer simulations: effects of pH and generation on dendrimer structure and siRNA binding. Macromol Biosci 12:225–240

    Article  CAS  Google Scholar 

  83. Heissig P, Klein PM, Hadwiger P, Wagner E (2016) DNA as tunable adaptor for siRNA polyplex stabilization and functionalization. Mol Ther—Nucleic Acids 5:e288

    Article  CAS  Google Scholar 

  84. Pavan GM, Albertazzi L, Danani A (2010) Ability to adapt: different generations of PAMAM dendrimers show different behaviors in binding siRNA. J Phys Chem B 114:2667–2675

    Article  CAS  Google Scholar 

  85. Ouyang D, Zhang H, Parekh HS, Smith SC (2011) The effect of pH on PAMAM dendrimer–siRNA complexation—endosomal considerations as determined by molecular dynamics simulation. Biophys Chem 158:126–133

    Article  CAS  Google Scholar 

  86. An M, Hutchison JM, Parkin SR, DeRouchey JE (2014) Role of pH on the compaction energies and phase behavior of low generation PAMAM–DNA complexes. Macromolecules 47:8768–8776

    Article  CAS  Google Scholar 

  87. Tian W, Ma Y (2012) pH-responsive dendrimers interacting with lipid membranes. Soft Matter 8:2627–2632

    Article  CAS  Google Scholar 

  88. Tian W, Ma Y (2012) Insights into the endosomal escape mechanism via investigation of dendrimer–membrane interactions. Soft Matter 8:6378–6384

    Article  CAS  Google Scholar 

  89. Tu C, Chen K, Tian W, Ma Y (2013) Computational investigations of a peptide-modified dendrimer interacting with lipid membranes. Macromol Rapid Commun 34:1237–1242

    Article  CAS  Google Scholar 

  90. Tian W, Ma Y (2010) Complexation of a linear polyelectrolyte with a charged dendrimer: polyelectrolyte stiffness effects. Macromolecules 43:1575–1582

    Article  CAS  Google Scholar 

  91. Shao N, Dai T, Liu Y, Cheng Y (2015) A supramolecular approach to improve the gene transfection efficacy of dendrimers. Chem Commun 51:9741–9743

    Article  CAS  Google Scholar 

  92. Kollman PA, Allen LC (1972) Theory of the hydrogen bond. Chem Rev 72:283–303

    Article  CAS  Google Scholar 

  93. Wang M, Liu H, Li L, Cheng Y (2014) A fluorinated dendrimer achieves excellent gene transfection efficacy at extremely low nitrogen to phosphorus ratios. Nat Commun 5:3053

    Google Scholar 

  94. Wang M, Cheng Y (2016) Structure-activity relationships of fluorinated dendrimers in DNA and siRNA delivery. Acta Biomater 46:204–210

    Article  CAS  Google Scholar 

  95. Yu G-S, Yu H-N, Choe Y-H, Son S-J, Ha T-H, Choi J-S (2011) Sequential conjugation of 6-aminohexanoic acids and l-arginines to poly(amidoamine) dendrimer to modify hydrophobicity and flexibility of the polymeric gene carrier. Bull Korean Chem Soc 32:651–655

    Article  CAS  Google Scholar 

  96. Matulis D, Rouzina I, Bloomfield VA (2002) Thermodynamics of cationic lipid binding to DNA and DNA condensation: roles of electrostatics and hydrophobicity. J Am Chem Soc 124:7331–7342

    Article  CAS  Google Scholar 

  97. Yang J, Zhang Q, Chang H, Cheng Y (2015) Surface-engineered dendrimers in gene delivery. Chem Rev 115:5274–5300

    Article  CAS  Google Scholar 

  98. Santos JL, Oliveira H, Pandita D, Rodrigues J, Pêgo AP, Granja PL, Tomás H (2010) Functionalization of poly(amidoamine) dendrimers with hydrophobic chains for improved gene delivery in mesenchymal stem cells. J Controll Release 144:55–64

    Article  CAS  Google Scholar 

  99. Chang H, Zhang Y, Li L, Cheng Y (2015) Efficient delivery of small interfering RNA into cancer cells using dodecylated dendrimers. J Mater Chem B 3:8197–8202

    Article  CAS  Google Scholar 

  100. Posocco P, Pricl S, Jones S, Barnard A, Smith DK (2010) Less is more—multiscale modelling of self-assembling multivalency and its impact on DNA binding and gene delivery. Chem Sci 1:393–404

    Article  CAS  Google Scholar 

  101. Posocco P, Laurini E, Dal Col V, Marson D, Karatasos K, Fermeglia M, Pricl S (2012) Tell me something i do not know. multiscale molecular modeling of dendrimer/dendron organization and self-assembly in gene therapy. Curr Med Chem 19:5062–5087

    Article  CAS  Google Scholar 

  102. Hu J, Hu K, Cheng Y (2016) Tailoring the dendrimer core for efficient gene delivery. Acta Biomater 35:1–11

    Article  CAS  Google Scholar 

  103. Liu X, Wu J, Yammine M et al (2011) Structurally flexible triethanolamine core PAMAM dendrimers are effective nanovectors for DNA transfection in vitro and in vivo to the mouse thymus. Bioconjug Chem 22:2461–2473

    Article  CAS  Google Scholar 

  104. Rodrigo AC, Rivilla I, Pérez-Martínez FC et al (2011) Efficient, non-toxic hybrid PPV-PAMAM dendrimer as a gene carrier for neuronal cells. Biomacromol 12:1205–1213

    Article  CAS  Google Scholar 

  105. Pavan GM, Mintzer MA, Simanek EE, Merkel OM, Kissel T, Danani A (2010) Computational insights into the interactions between DNA and siRNA with “rigid” and “flexible” triazine dendrimers. Biomacromol 11:721–730

    Article  CAS  Google Scholar 

  106. Pavan GM, Danani A (2012) Dendrimers and dendrons for siRNA binding: computational insights. J Drug Deliv Sci Technol 22:83–89

    Article  CAS  Google Scholar 

  107. Pavan GM (2014) Modeling the interaction between dendrimers and nucleic acids: a molecular perspective through hierarchical scales. ChemMedChem 9:2623–2631

    Article  CAS  Google Scholar 

  108. Wang F, Wang Y, Wang H, Shao N, Chen Y, Cheng Y (2014) Synergistic effect of amino acids modified on dendrimer surface in gene delivery. Biomaterials 35:9187–9198

    Article  CAS  Google Scholar 

  109. Yan L-T, Yu X (2009) Charged dendrimers on lipid bilayer membranes: insight through dissipative particle dynamics simulations. Macromolecules 42:6277–6283

    Article  CAS  Google Scholar 

  110. Guo R, Mao J, Yan L-T (2013) Unique dynamical approach of fully wrapping dendrimer-like soft nanoparticles by lipid bilayer membrane. ACS Nano 7:10646–10653

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work is supported by the National Natural Science Foundation of China (NSFC) Nos. 21474074, 21674078 (W.-d.T.), 21374073, 21574096 (K.C.), and 91027040 (Y-q. M.).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Wen-de Tian, Kang Chen or Yu-qiang Ma.

Additional information

This article is part of the Topical Collection “Polymeric Gene Delivery Systems”; edited by Yiyun Cheng.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shen, Zl., Xia, Yq., Yang, Qs. et al. Polymer–Nucleic Acid Interactions. Top Curr Chem (Z) 375, 44 (2017). https://doi.org/10.1007/s41061-017-0131-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s41061-017-0131-x

Keywords

Navigation