Skip to main content
Log in

Applications and Advantages of Stable Isotope Phosphate Labeling of RNA in Mass Spectrometry

  • Review
  • Published:
Topics in Current Chemistry Aims and scope Submit manuscript

Abstract

Mass spectrometry (MS) has become an enabling technology for the characterization of post-transcriptionally modified nucleosides within ribonucleic acids (RNAs). These modified RNAs tend to be more challenging to completely characterize using conventional genomic-based sequencing technologies. As with many biological molecules, information relating to the presence or absence of a particular compound (i.e., qualitative measurement) is only one step in sample characterization. Additional useful information is found by performing quantitative measurements on the levels of the compound of interest in the sample. Phosphate labeling of modified RNAs has been developed by our laboratory to enhance conventional mass spectrometry techniques. By taking advantage of the mechanism of action of many ribonucleases (RNases), digesting RNA samples in the presence of 18O-labeled water generates an 18O-labeled 3′-phosphate in each digestion product. We describe the historical development of this approach, contrast this stable isotope labeling strategy with others used in RNA mass spectrometry, and provide examples of new analytical mass spectrometry methods that are enabled by phosphate labeling in this fashion.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Reproduced with permission from Berhane et al. [28] Copyright 2003

Fig. 3

Reproduced with permission from Meng et al. [29] Copyright 2005

Fig. 4

Reproduced with permission from Li et al. [33] Copyright 2012

Fig. 5

Reproduced with permission from Li et al. [34] Copyright 2013

Fig. 6

Reproduced with permission from Wetzel et al. [35] Copyright 2014

Similar content being viewed by others

References

  1. Nachtergaele S, He C (2016) The emerging biology of RNA post-transcriptional modifications. RNA Biol 14(2):156–163

    Article  Google Scholar 

  2. Song J, Yi C (2017) Chemical modifications to RNA: a new layer of gene expression regulation. ACS Chem Biol 12(2):316–325

    Article  CAS  Google Scholar 

  3. Zhang X et al (2016) Small RNA modifications: integral to function and disease. Trends Mol Med 22(12):1025–1034

    Article  CAS  Google Scholar 

  4. Kowalak JA et al (1993) A novel method for the determination of post-transcriptional modification in RNA by mass spectrometry. Nucleic Acids Res 21(19):4577–4585

    Article  CAS  Google Scholar 

  5. Kowalak JA, Bruenger E, McCloskey JA (1995) Posttranscriptional modification of the central loop of domain V in Escherichia coli 23 S ribosomal RNA. J Biol Chem 270(30):17758–17764

    Article  CAS  Google Scholar 

  6. Ni J et al (1996) Interpretation of oligonucleotide mass spectra for determination of sequence using electrospray ionization and tandem mass spectrometry. Anal Chem 68(13):1989–1999

    Article  CAS  Google Scholar 

  7. McLuckey SA, Van Berkel GJ, Glish GL (1992) Tandem mass spectrometry of small, multiply charged oligonucleotides. J Am Soc Mass Spectrom 3:60–70

    Article  CAS  Google Scholar 

  8. Kirpekar F, Douthwaite S, Roepstorff P (2000) Mapping posttranscriptional modifications in 5S ribosomal RNA by MALDI mass spectrometry. RNA 6:296–306

    Article  CAS  Google Scholar 

  9. Meng Z, Limbach PA (2006) Mass spectrometry of RNA: linking the genome to the proteome†. Brief Funct Genom 5(1):87–95

    Article  CAS  Google Scholar 

  10. Ross R et al (2016) Sequence mapping of transfer RNA chemical modifications by liquid chromatography tandem mass spectrometry. Methods 107:73–78

    Article  CAS  Google Scholar 

  11. Limbach PA, Paulines MJ (2017) Going global: the new era of mapping modifications in RNA. Wiley Interdiscip Rev: RNA 8(1):e1367

    Article  Google Scholar 

  12. Li X, Xiong X, Yi C (2016) Epitranscriptome sequencing technologies: decoding RNA modifications. Nat Methods 14(1):23–31

    Article  Google Scholar 

  13. Ong SE et al (2002) Stable isotope labeling by amino acids in cell culture, SILAC, as a simple and accurate approach to expression proteomics. Mol Cell Proteom 1(5):376–386

    Article  CAS  Google Scholar 

  14. Ong SE, Mann M (2006) A practical recipe for stable isotope labeling by amino acids in cell culture (SILAC). Nat Protoc 1(6):2650–2660

    Article  CAS  Google Scholar 

  15. Brückl T et al (2009) Parallel isotope-based quantification of modified tRNA nucleosides. Angew Chem Int Ed Engl 48(42):7932–7934

    Article  Google Scholar 

  16. Kellner S et al (2014) Absolute and relative quantification of RNA modifications via biosynthetic isotopomers. Nucleic Acids Res 42(18):e142

    Article  Google Scholar 

  17. Waghmare SP, Dickman MJ (2011) Characterization and quantification of RNA post-transcriptional modifications using stable isotope labeling of RNA in conjunction with mass spectrometry analysis. Anal Chem 83(12):4894–4901

    Article  CAS  Google Scholar 

  18. Popova AM, Williamson JR (2014) Quantitative analysis of rRNA modifications using stable isotope labeling and mass spectrometry. J Am Chem Soc 136(5):2058–2069

    Article  CAS  Google Scholar 

  19. Taoka M et al (2015) A mass spectrometry-based method for comprehensive quantitative determination of post-transcriptional RNA modifications: the complete chemical structure of Schizosaccharomyces pombe ribosomal RNAs. Nucleic Acids Res 43(18):e115

    Article  Google Scholar 

  20. Paulines MJ, Limbach PA (2017) Stable isotope labeling for improved comparative analysis of RNA digests by mass spectrometry. J Am Soc Mass Spectrom. doi:10.1007/s13361-017-1593-3

    Google Scholar 

  21. Sprinson DB, Rittenberg D (1951) Nature of the activation process in enzymatic reactions. Nature 167(4247):484

    Article  CAS  Google Scholar 

  22. Desiderio DM, Kai M (1983) Preparation of stable isotope-incorporated peptide internal standards for field desorption mass spectrometry quantification of peptides in biologic tissue. Biomed Mass Spectrom 10(8):471–479

    Article  CAS  Google Scholar 

  23. Mirgorodskaya OA et al (2000) Quantitation of peptides and proteins by matrix-assisted laser desorption/ionization mass spectrometry using (18)O-labeled internal standards. Rapid Commun Mass Spectrom 14(14):1226–1232

    Article  CAS  Google Scholar 

  24. Yao X et al (2001) Proteolytic 18O labeling for comparative proteomics: model studies with two serotypes of adenovirus. Anal Chem 73(13):2836–2842

    Article  CAS  Google Scholar 

  25. Qian WJ et al (2009) Large-scale multiplexed quantitative discovery proteomics enabled by the use of an (18)O-labeled “universal” reference sample. J Proteome Res 8(1):290–299

    Article  CAS  Google Scholar 

  26. Lange S et al (2010) Identification of phosphorylation-dependent interaction partners of the adapter protein ADAP using quantitative mass spectrometry: SILAC vs (18)O-labeling. J Proteome Res 9(8):4113–4122

    Article  CAS  Google Scholar 

  27. Hamasaki T et al (2013) Synthesis of (1)(8)O-labeled RNA for application to kinetic studies and imaging. Nucleic Acids Res 41(12):e126

    Article  CAS  Google Scholar 

  28. Berhane BT, Limbach PA (2003) Stable isotope labeling for matrix-assisted laser desorption/ionization mass spectrometry and post-source decay analysis of ribonucleic acids. J Mass Spectrom 38:872–878

    Article  CAS  Google Scholar 

  29. Meng Z, Limbach PA (2005) Quantitation of ribonucleic acids using 18-O labeling and mass spectrometry. Anal Chem 77:1891–1895

    Article  CAS  Google Scholar 

  30. Hartmer R et al (2003) RNase T1 mediated base-specific cleavage and MALDI-TOF MS for high-throughput comparative sequence analysis. Nucleic Acids Res 31(9):e47

    Article  Google Scholar 

  31. Castleberry CM, Limbach PA (2010) Relative quantitation of transfer RNAs using liquid chromatography-mass spectrometry (LC–MS) and signature digestion products. Nucleic Acids Res 38:e162

    Article  Google Scholar 

  32. Hossain M, Limbach PA (2007) Mass spectrometry-based detection of transfer RNAs by their signature endonuclease digestion products. RNA 13(2):295–303

    Article  CAS  Google Scholar 

  33. Li S, Limbach PA (2012) Method for comparative analysis of ribonucleic acids using isotope labeling and mass spectrometry. Anal Chem 84(20):8607–8613

    Article  CAS  Google Scholar 

  34. Li S, Limbach PA (2013) Mass spectrometry sequencing of transfer ribonucleic acids by the comparative analysis of RNA digests (CARD) approach. Analyst 138(5):1386–1394

    Article  CAS  Google Scholar 

  35. Wetzel C, Li S, Limbach PA (2014) Metabolic de-isotoping for improved LC–MS characterization of modified RNAs. J Am Soc Mass Spectrom 25(7):1114–1123

    Article  CAS  Google Scholar 

  36. Li S, Limbach PA (2014) Identification of RNA sequence isomers by isotope labeling and LC–MS/MS. J Mass Spectrom 49(11):1191–1198

    Article  CAS  Google Scholar 

  37. Bruce AG, Uhlenbeck OC (1978) Reactions at the termini of tRNA with T4 RNA ligase. Nucleic Acids Res 5(10):3665–3677

    Article  CAS  Google Scholar 

  38. England TE, Bruce AG, Uhlenbeck OC (1980) Specific labeling of 3′ termini of RNA with T4 RNA ligase. Meth Enzymol 65(1):65–74

    Article  CAS  Google Scholar 

  39. Viollet S et al (2011) T4 RNA ligase 2 truncated active site mutants: improved tools for RNA analysis. BMC Biotechnol 11:72

    Article  CAS  Google Scholar 

  40. Abad MG, Rao BS, Jackman JE (2010) Template-dependent 3′-5′ nucleotide addition is a shared feature of tRNAHis guanylyltransferase enzymes from multiple domains of life. Proc Natl Acad Sci USA 107(2):674–679

    Article  CAS  Google Scholar 

  41. Jackman JE, Gott JM, Gray MW (2012) Doing it in reverse: 3′-to-5′ polymerization by the Thg1 superfamily. RNA 18(5):886–899

    Article  CAS  Google Scholar 

  42. Timms JF, Cutillas PR (2010) Overview of quantitative LC–MS techniques for proteomics and activitomics. Methods Mol Biol 658:19–45

    Article  CAS  Google Scholar 

Download references

Acknowledgements

Financial support for our lab’s decade-long work in the area of stable isotope labeling of RNA has been generously supported by the National Science Foundation, including our current NSF support (CHE1507357). The generous support of the University of Cincinnati and the Rieveschl Endowment for these studies are also appreciated.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Patrick A. Limbach.

Additional information

This article is part of the Topical Collection “Phosphate Labeling and Sensing in Chemical Biology”; edited by Henning Jessen.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Borland, K., Limbach, P.A. Applications and Advantages of Stable Isotope Phosphate Labeling of RNA in Mass Spectrometry. Top Curr Chem (Z) 375, 33 (2017). https://doi.org/10.1007/s41061-017-0121-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s41061-017-0121-z

Keywords

Navigation