Skip to main content
Log in

\(^{3}\hbox{He} - \alpha \) Radiative Capture Reaction by EFT

  • Research Paper
  • Published:
Iranian Journal of Science Aims and scope Submit manuscript

Abstract

We have investigated the \(^3\hbox{He} (\alpha ,\gamma ) ^7\hbox{Be}\) radiative capture reaction using the pionless Effective Field Theory (EFT). The amplitude, cross-section, and S-factor for the \(E_1\) and \(E_2\) transitions to the \(^{7}\hbox{Be}\) ground state have been computed using the Faddeev equation approach up to Next-to Leading Order in the astrophysical energy range. Our aim has been the study of Coulomb interaction effects and the contribution of EFT higher-order calculations in optimizing the results. The computed S-factor for the reaction agrees with experimental data and previous theoretical calculations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Data availability

All data generated or analyzed during this study are included in this published article.

References

  • Bemmerer D, Confortola F, Costantini H, Formiola A, Gyurky Gy, Bonetti R, Broggini C, Corvisiero P, Elekes Z, Fulop Zs, Gervino G, Guglielmetti A, Gustavino C, Imbriani G, Junker M, Lemut A, Limata B, Lozza V, Marta M, Menegazzo R, Prati P, Roa V, Rolfs C, Rossi Alvarez C, Somorjai E, Straniero O, Strieder F, Terrasi F, Trautvetter HP (2006) Activation measurement of the \(^{3}\text{He }(\alpha ,\gamma )^{7}\text{Be }\) cross section at low energy (The LUNA Collaboration). Phys Rev Lett 97:122502

    Google Scholar 

  • Bertulani CA (2003) A potential model tool for direct capture reactions. Comput Phys Commun 156:123–141

    Google Scholar 

  • Bertulani CA, Hammer HW, van Kolck U (2002) Effective field theory for halo nuclei: shallow p-wave states. Nucl Phys A 712:37–58

    Google Scholar 

  • Bordeanu C, Gyürky Gy, Halasz Z, Szücs T, Kiss GG, Elekes Z, Farkas J, Fulop Zs, Somorjai E (2013) Activation measurement of the \(^{3}\text{He }(\alpha ,\gamma )^{7}\text{Be }\) reaction cross section at high energies. Nucl Phys A 908:1

    Google Scholar 

  • Brown TAD, Bordeanu C, Snover RF, Storm DW, Melonian D, Sallaska AL, Sjue SKL, Triambak S (2007) \(^{3}\text{He }+^{4}\text{He }\rightarrow ^{7}\text{Be }\) astrophysical S-factor. Phys Rev C 76:055801

    Google Scholar 

  • Canton L, Levchuk LG (2008) Low-energy radiative-capture reactions within two-cluster coupled-channel description. Nucl Phys A 808:192–219

    Google Scholar 

  • Carmona-Gallardo M, Nara Singh BS, Borge MJG, Briz JA, Cubero M, Fulton BR, Fynbo H, Gordillo N, Hass M, Haquin G, Maira A, Nacher E, Nir-El Y, Kumar V, McGrath J, Munoz-Martin A, Perea A, Pesudo V, Ribeiro G, Sanchez del Rio J, Tengblad O, Yaniv R, Yungreis Z (2012) New measurement of the \(^{3}\text{He }(\alpha ,\gamma )^{7}\text{Be }\) cross section at medium energies. Phys Rev C 86:032801

    Google Scholar 

  • Confortola F, Bemmerer D, Costantini H, Formiola A, Gyurky Gy, Bezzon P, Bonetti R, Broggini C, Corvisiero P, Elekes Z, Fulop Zs, Gervino G, Guglielmetti A, Gustavino C, Imbriani G, Junker M, Lemut A, Limata B, Lozza V, Marta M, Menegazzo R, Prati P, Roa V, Rolfs C, Rossi Alvarez C, Somorjai E, Straniero O, Strieder F, Terrasi F, Trautvetter HP (2007) Astrophysical S-factor of the \(^{3}\text{He }(\alpha ,\gamma )^{7}\text{Be }\) reaction measured at low energy via detection of prompt and delayed \(\gamma \) rays (The LUNA Collaboration). Phys Rev C 75:065803

    Google Scholar 

  • Csoto A, Langanke K (2000) Study of the \(^{3}\text{He }(^{4}\text{He },\gamma )^{7}\text{Be }\) and \(^{3}H(^{4}\text{He },\gamma )^{7}\text{Li }\) reactions in an extended two-cluster model. Few-Body Syst 29:121–130

    Google Scholar 

  • Cyburt RH, Barry D (2008) Evaluation of modern \(^{3}\text{He }(\alpha ,\gamma )^{7}\text{Be }\) data. Phys Rev C 78:064614

    Google Scholar 

  • Di Leva A, Gialanella L, Kunz R, Rogalla D, Schurmann D, Strieder F, De Cesare M, De Cesare N, D’Onofrio A, Fülöp Z, Gyürky Gy, Imbriani G, Mangano G, Ordine A, Roca V, Rolfs C, Romano M, Somorjai E, Terrasi F (2009) Sttelar and primordial nucleosynthesis of \(^{7}\text{Be }\): measurement of \(^{3}\text{He }(\alpha ,\gamma )^{7}\text{Be }\). Phys Rev Lett 102:232502

    Google Scholar 

  • Dohet-Eraly J (2016) \(^{3}\text{He }(\alpha ,\gamma )^{7}\text{Be }\) and \(^{3}H(\alpha ,\gamma )^{7}\text{Li }\) astrophysical S factors from the no-core shell model with continuum. Phys Lett B 757:430

    Google Scholar 

  • Filippone BW, Elwyn AJ, Davids CN, Koetke DD (1983) Proton capture cross section of \(^{7}\text{Be }\) and the flux of high energy solar neutrinos. Phys Rev C 28:2222

    Google Scholar 

  • Gyurky G, Confortola F, Costantini H, Formiola A, Bemmerer D, Bonetti R, Broggini C, Corvisiero P, Elekes Z, Fulop Zs, Gervino G, Guglielmetti A, Gustavino C, Imbriani G, Junker M, Laubenstein A, Lemut A, Limata B, Lozza V, Marta M, Menegazzo R, Prati P, Roa V, Rolfs C, Rossi Alvarez C, Somorjai E, Straniero O, Strieder F, Terrasi F, Trautvetter HP (2007) \(^{3}\text{He }(\alpha ,\gamma )^{7}\text{Be }\) cross section at low energy (The LUNA Collaboration). Phys Rev C 75:035805

    Google Scholar 

  • Higa R, Rupak G, Vaghani A (2018) Radiative \(^{3}H(\alpha ,\gamma )^{7}\text{Li }\) reaction in halo effective field theory. Eur Phys J A 54(5):89

    Google Scholar 

  • Igamov SB, Tursunmakhatov KI, Yarmukhamedov R (2008) Determination of the \({}^{3}\text{He }+{}^{4}\text{He }\rightarrow {}^{7}\text{Be }\) asymptotic normalization coefficients (nuclear vertex constants) and their application for extrapolation of the \(^{3}\text{He }(\alpha ,\gamma )^{7}\text{Be }\) astrophysial S-fators to the solar energy region. Phys Rev C 85:045807

    Google Scholar 

  • Ji C, Elster CH, Phillips DP (2014) \(^{6}\text{He }\) nucleus in halo effective field theory. Phys Rev C 90:044004

    Google Scholar 

  • Khoddam M, Sadeghi H, Nahidinezhad S (2022) Study of \(^{3}\text{He }(\alpha ,\gamma )^{7}\text{Be }\) reaction using effective field theory. Astrophys Space Sci 367:23

    Google Scholar 

  • Kiss GG, La Cognata M, Spitaleri C, Yarmukhamedov R, Wiedenhöver I, Baby LT, Cherubini S, Cvetinovic A, Agata GD, Figuera P, Guardo GL, Gulino M, Hayakawa S, Indelicato I, Lamia L, Lattuada M, Mudo F, Palmerini S, Mukhamedzhanov AM (2020) Astrophysical S-factor for the \(^{3}\text{H }(\alpha ,\gamma )^{7}\text{Li }\) reaction via the asymptotic normalization coefficient (ANC) method. Phys Lett B 807:135606

    Google Scholar 

  • Mohr P (2009) Low-energy \(^{3}\text{He }(\alpha ,\alpha )^{3}\text{He }\) elastic scattering and the \(^{3}\text{He }(\alpha ,\gamma )^{7}\text{Be }\) reaction. Phys Rev C 79:065804

    Google Scholar 

  • Nahidinezhad S, Sadeghi H, Khalili H (2020) \(d-\alpha \) Radiative capture process by effective field theory. New Astron 80:101424

    Google Scholar 

  • Nahidinezhad S, Sadeghi H, Khalili H (2020) Astrophysical S-factor of the \({d(\alpha ,\gamma )^{6}\text{Li }}\) process by effective field theory. Astrophys Space Sci 4:365

    Google Scholar 

  • Nahidinezhad S, Sadeghi H, Khoddam M (2021) Reaction rate calculation of \({d(\alpha ,\gamma )^{6}\text{Li }}\) process at low energy in framework of effective field theory. New Astron 82:101461

    Google Scholar 

  • Nahidinezhad S, Sadeghi H, Khoddam M (2022) \(d-\alpha \) radiative capture reaction at the \(3^+\) resonance. New Astron 91:101700

    Google Scholar 

  • Nara Singh BS, Hass M, Nir-El Y, Haquin G (2004) New precision measurement of the \(^{3}\text{He }(\alpha ,\gamma )^{7}\text{Be }\). Phys Rev Lett 93:262503

    Google Scholar 

  • Neff T (2010) Towards microscopic ab initio calculations of astrophysical S-factors. Nucl Phys 66:341–345

    Google Scholar 

  • Neff T (2011) Microscopic calculation of the \(^{3}\text{He }(\alpha ,\gamma )^{7}\text{Be }\) and \(^{3}H(\alpha ,\gamma )^{7}\text{Li }\) capture cross sections using realistic interactions. Phys Rev Lett 106:042502

    Google Scholar 

  • Nollett KM (2001) Radiative alpha-capture cross sections from realistic nucleon–nucleon interactions and variational Monte Carlo wave functions. Phys Rev C 63:054002

    Google Scholar 

  • Osborne J, Barnes C, Ravanagh R, Kremer R, Mathews G, Zyskind J, Parker P, Howard A (1984) Low-energy behavior of the \(^{3}\text{He }(\alpha ,\gamma )^{7}\text{Be }\) cross section. Nucl. Phys. A 419:115

    Google Scholar 

  • Poudel M, Phillips DR (2022) Effective field theory analysis of \({}^{3}\text{He }-\alpha \) scattering data. J Phys G Nucl Part Phys 49:045102

    Google Scholar 

  • Premarathna P, Rupak G (2020) Bayesian analysis of capture reactions \(^{3}\text{He }(\alpha ,\gamma )^{7}\text{Be }\) and \(^{3}H(\alpha ,\gamma )^{7}\text{Li }\). Eur Phys J A 56:166

    Google Scholar 

  • Sadeghi H (2007) Neutron-deuteron system and the photon polarization parameter at thermal neutron energies. Phys Rev C 75:044002

    Google Scholar 

  • Sadeghi H, Bayegan S (2010) Triton photodisintegration with effective field theory. Few Body Syst 47:167

    Google Scholar 

  • Sadeghi H, Ghasemi R (2013) Reduced transition probabilities for \(^4\text{He }\) radiative capture reactions at astrophysical energies. J Korean Phys Soc 64(11):1654–1657

    Google Scholar 

  • Sadeghi H, Khalili H (2014) Effective field theory calculation of two-deuteron radiative capture reaction at astrophysical energies. Astrophys Space Sci 352(2):637

    Google Scholar 

  • Sadeghi H, Bayegan S, Grießhammer HW (2006) Effective field theory calculation of nd radiative capture at thermal energies. Phys Lett B 643:263

    Google Scholar 

  • Sadeghi H, Khalili H, Godarzi M (2013) Astrophysical S-factor of the \(d(p,\gamma ){}^{3}\text{He }\) process by effective field theory. Chin Phys C 37:044102

    Google Scholar 

  • Sadeghi H, Khalili H, Godarzi M (2014) Isospin violation in the \(d(n,\gamma )^{3}H\) process at energies relevant for big bang nucleosynthesis. Astron Astrophys 14:357–366

    Google Scholar 

  • Sadeghi H, Ghamary M, Mohammadi S (2018) Astrophysical S-factor of the \(^{3}\text{He }(\alpha ,\gamma )^{7}\text{Be }\) reaction in the Big-Bang nucleosynthesis. New Astron 61:14–18

    Google Scholar 

  • Szucs T, Kiss GG, Gyurky Gy, Halasz Z, Szegedi TN, Fulop Zs (2019) Cross section of \(^{3}\text{He }(\alpha ,\gamma )^{7}\text{Be }\) around the \(^{7}\text{Be }\) proton separation threshold. Phys Rev C 99:055804

    Google Scholar 

  • Takacs MP, Bemmerer D, Szucs T, Zuber K (2015) Constraining Big Bang lithium production with recent solar neutrino data. Phys. Rev. D 91:123526

    Google Scholar 

  • Takacs MP, Bemmerer D, Junghans AR, Zuber K (2018) Constraining the \(^{7}\text{Be }(p, \gamma )^{8}B\) S -factor with the new precise \(^{7}\text{Be }\) solar neutrino flux from Borexino. Nucl Phys A 970:78

    Google Scholar 

  • Tursunov EM, Turakulov SA (2018) Astrophysical \(^{3}\text{He }(\alpha ,\gamma )^{7}\text{Be }\) and \(^{3}H(\alpha ,\gamma )^{7}\text{Li }\) direct capture reactions in a potential-model approach. Phys Rev C 97:035802

    Google Scholar 

  • Tursunov EM, Turakulov SA, Kadyrov AS (2020) Analysis of the \(^{3}\text{He }(\alpha ,\gamma )^{7}\text{Be }\) and \(^{3}H(\alpha ,\gamma )^{7}\text{Li }\) astrophysical direct capture reactions in a modified potential-model approach. Nucl Phys A 1006:122108

    Google Scholar 

  • van Kolck U (2005) Effective field theory of light nuclei. Nucl Phys A 752:145

    Google Scholar 

  • Zhang X, Nollett KM, Phillips DR (2020) S-factor and scattering-parameter extractions from \({}^{3}{\text{He}}+{}^{4}{\text{He}}{ \rightarrow }^{7}{\text{Be}}+\gamma \). J Phys G 47:054002

    Google Scholar 

Download references

Funding

No funding was received to assist with the preparation of this manuscript.

Author information

Authors and Affiliations

Authors

Contributions

BC conceived of the presented idea. BC developed the theory and performed the computations. AB and AC verified the analytical methods. BC supervised the findings of this work. All authors discussed the results and contributed to the final manuscript.

Corresponding author

Correspondence to M. Khoddam.

Ethics declarations

Conflict of interest

Authors state no conflict of interest.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Khoddam, M., Sadeghi, H. & Nahidinezhad, S. \(^{3}\hbox{He} - \alpha \) Radiative Capture Reaction by EFT. Iran J Sci 47, 1013–1027 (2023). https://doi.org/10.1007/s40995-023-01433-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40995-023-01433-7

Keywords

Navigation