Skip to main content
Log in

An Efficient Alternative Kernel of Gaussian Radial Basis Function for Solving Nonlinear Integro-Differential Equations

  • Research Paper
  • Published:
Iranian Journal of Science and Technology, Transactions A: Science Aims and scope Submit manuscript

Abstract

This paper focuses on improving radial basis function (RBF) method for solving nonlinear Volterra–Fredholm integro-differential equations. The RBF method is one of the most important numerical techniques for approximating the solution of problems and interpolating scattered data in any dimensions. Infinitely smooth RBFs such as Gaussians (GA) have the spectral convergence rate. These kernels depend on an auxiliary parameter, called shape parameter that plays a significant role to specify the accuracy of RBF method. When this parameter is close to zero, we achieve the highest accuracy, here the standard RBF interpolant matrix becomes severely ill-conditioned. To overcome this problem, we use a stable alternative base made on the eigenfunction expansion with the help of the properties of the orthogonal Hermite polynomials for GA-RBFs. This idea produces a stable cardinal interpolation function that lacks eigenvalues as the factors of the ill-conditioning of the interpolation matrix. We generalize the upper bound of Volterra integro-differential from x to a function in terms of x with specific conditions. By applying this approach and the Legendre–Gauss–Lobatto quadrature formula, the solution of problem under study is reduced to the solution of a nonlinear system of algebraic equations. We also examine the effect of the number of Legendre–Gauss–Lobatto nodes on the accuracy of the calculations. Furthermore, we find an upper bound for the error function. Several numerical experiments indicate that the present method is more accurate and stable in comparison with the standard GA-RBFs and some other methods.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Abbaszadeh M, Dehghan M (2019) Direct meshless local Petrov–Galerkin (DMLPG) method for time-fractional fourth-order reaction–diffusion problem on complex domains. Comput Math Appl

  • Al-Khaled K, Allan F (2005) Decomposition method for solving nonlinear integro-differential equations. J Appl Math Comput 19(1):415–425

    Article  MathSciNet  MATH  Google Scholar 

  • Amin R, Mahariq I, Shah K, Awais M, Elsayed F (2021) Numerical solution of the second order linear and nonlinear integro-differential equations using Haar wavelet method. Arab J Basic Appl Sci 28(1):11–19

    Google Scholar 

  • Armand A, Gouyandeh Z (2017) The Tau-collocation method for solving nonlinear integro-differential equations and application of a population model. Int J Math Modell Comput 7(4(FALL)):265–276

    Google Scholar 

  • Aslefallah M, Shivanian E (2015) Nonlinear fractional integro-differential reaction–diffusion equation via radial basis functions. Eur Phys J Plus 130(3):1–9

    Article  Google Scholar 

  • Athavale P, Tadmor E (2010) Novel integro-differential equations in image processing and its applications. In: Computational imaging VIII, vol 7533. International Society for Optics and Photonics, p 75330S

  • Avazzadeh Z, Heydari M, Cattani C (2019) Legendre wavelets for fractional partial integro-differential viscoelastic equations with weakly singular kernels. Eur Phys J Plus 134(7):368

    Article  Google Scholar 

  • Az-Zo’bi EA, AlZoubi WA, Akinyemi L, Şenol M, Alsaraireh IW, Mamat M (2021) Abundant closed-form solitons for time-fractional integro-differential equation in fluid dynamics. Opt Quant Electron 53(3):1–16

    Article  Google Scholar 

  • Azodi HD, Yaghouti MR (2018) Bernoulli polynomials collocation for weakly singular Volterra integro-differential equations of fractional order. Filomat 32(10):3623–3635

    Article  MathSciNet  MATH  Google Scholar 

  • Babolian E, Masouri Z, Hatamzadeh S (2008) New direct method to solve nonlinear Volterra–Fredholm integral and integro-differential equations using operational matrix with block-pulse functions. Prog Electromagn Res B 8:59–76

    Article  Google Scholar 

  • Baxter B (1992) The interpolation theory of radial basis functions, a dissertation presented in fulfillment of the requirements for degree of doctor of philosophy

  • Cavoretto R, Fasshauer GE, McCourt M (2015) An introduction to the Hilbert–Schmidt SVD using iterated Brownian bridge kernels. Numer Algorithms 68(2):393–422

    Article  MathSciNet  MATH  Google Scholar 

  • Dehghan M, Salehi R (2012) The numerical solution of the non-linear integro-differential equations based on the meshless method. J Comput Appl Math 236(9):2367–2377

    Article  MathSciNet  MATH  Google Scholar 

  • Elnagar GN, Kazemi MA (1998) Pseudospectral Legendre-based optimal computation of nonlinear constrained variational problems. J Comput Appl Math 88(2):363–375

    Article  MathSciNet  MATH  Google Scholar 

  • Elnagar GN, Razzaghi M (1997) A collocation-type method for linear quadratic optimal control problems. Opt Control Appl Methods 18(3):227–235

    Article  MathSciNet  MATH  Google Scholar 

  • Farshadmoghadam F, Deilami Azodi H, Yaghouti MR (2021) An improved radial basis functions method for the high-order Volterra–Fredholm integro-differential equations. Math Sci 1–14

  • Farshadmoghadam F, Najafi AR, Yaghouti MR (2021) European option under a skew version of the GBM model with transaction costs by an RBF method. J Stat Comput Simul 1–19

  • Fasshauer GE, McCourt MJ (2012) Stable evaluation of Gaussian radial basis function interpolants. SIAM J Sci Comput 34(2):A737–A762

    Article  MathSciNet  MATH  Google Scholar 

  • Fasshauer GE, McCourt MJ (2015) Kernel-based approximation methods using Matlab, vol 19. World Scientific Publishing Company, Singapore

    MATH  Google Scholar 

  • Fornberg B, Flyer N (2015) Solving PDEs with radial basis functions. Acta Numer 24:215–258

    Article  MathSciNet  MATH  Google Scholar 

  • Fornberg B, Larsson E, Flyer N (2011) Stable computations with Gaussian radial basis functions. SIAM J Sci Comput 33(2):869–892

    Article  MathSciNet  MATH  Google Scholar 

  • Fornberg B, Piret C (2008) A stable algorithm for flat radial basis functions on a sphere. SIAM J Sci Comput 30(1):60–80

    Article  MathSciNet  MATH  Google Scholar 

  • Fornberg B, Wright G (2004) Stable computation of multiquadric interpolants for all values of the shape parameter. Comput Math Appl 48(5–6):853–867

    Article  MathSciNet  MATH  Google Scholar 

  • Franke R (1979) A critical comparison of some methods for interpolation of scattered data. Technical reports on Naval Postgraduate School Monterey

  • French DA (2004) Identification of a free energy functional in an integro-differential equation model for neuronal network activity. Appl Math Lett 17(9):1047–1051

    Article  MathSciNet  MATH  Google Scholar 

  • Gallas B, Barrett HH(1998) Modeling all orders of scatter in nuclear medicine. In: 1998 IEEE nuclear science symposium conference record. 1998 IEEE nuclear science symposium and medical imaging conference (Cat. No. 98CH36255), vol 3. IEEE, pp 1964–1968

  • Ghorbani M (2010) Diffuse element Kansa method. Appl Math Sci 4(12):583–594

    MathSciNet  MATH  Google Scholar 

  • Giannaros E, Kotzakolios A, Kostopoulos V, Campoli G (2019) Hypervelocity impact response of CFRP laminates using smoothed particle hydrodynamics method: implementation and validation. Int J Impact Eng 123:56–69

    Article  Google Scholar 

  • Golberg M, Chen C, Bowman H (1999) Some recent results and proposals for the use of radial basis functions in the BEM. Eng Anal Boundary Elem 23(4):285–296

    Article  MATH  Google Scholar 

  • Grigoriev YN, Kovalev VF, Meleshko SV, Ibragimov NH (2010) Symmetries of integro-differential equations: with applications in mechanics and plasma physics. Springer, Berlin

    Book  MATH  Google Scholar 

  • Hardy RL (1971) Multiquadric equations of topography and other irregular surfaces. J Geophys Res 76(8):1905–1915

    Article  Google Scholar 

  • Heydari M, Dastjerdi HL, Ahmadabadi MN (2018) An efficient method for the numerical solution of a class of nonlinear fractional Fredholm integro-differential equations. Int J Nonlinear Sci Numer Simul 19(2):165–173

    Article  MathSciNet  MATH  Google Scholar 

  • Hosseini VR, Shivanian E, Chen W (2016) Local radial point interpolation (MLRPI) method for solving time fractional diffusion-wave equation with damping. J Comput Phys 312:307–332

    Article  MathSciNet  MATH  Google Scholar 

  • Ilati M, Dehghan M (2018) Error analysis of a meshless weak form method based on radial point interpolation technique for Sivashinsky equation arising in the alloy solidification problem. J Comput Appl Math 327:314–324

    Article  MathSciNet  MATH  Google Scholar 

  • Jafarabadi A, Shivanian E (2018) Numerical simulation of nonlinear coupled Burgers’ equation through meshless radial point interpolation method. Eng Anal Boundary Elem 95:187–199

    Article  MathSciNet  MATH  Google Scholar 

  • Kansa EJ (1990) Multiquadrics-a scattered data approximation scheme with applications to computational fluid-dynamics-I surface approximations and partial derivative estimates. Comput Math Appl 19(8–9):127–145

    Article  MathSciNet  MATH  Google Scholar 

  • Kraemer MA, Kalachev LV (2003) Analysis of a class of nonlinear integro-differential equations arising in a forestry application. Q Appl Math 61(3):513–535

    Article  MathSciNet  MATH  Google Scholar 

  • Larsson E, Lehto E, Heryudono A, Fornberg B (2013) Stable computation of differentiation matrices and scattered node stencils based on Gaussian radial basis functions. SIAM J Sci Comput 35(4):A2096–A2119

    Article  MathSciNet  MATH  Google Scholar 

  • Li X, Dong H (2019) Analysis of the element-free Galerkin method for Signorini problems. Appl Math Comput 346:41–56

    MathSciNet  MATH  Google Scholar 

  • McCourt M (2013) Using Gaussian Eigenfunctions to solve boundary value problems. Adv Appl Math Mech 5(4):569–594

    Article  MathSciNet  Google Scholar 

  • Meinguet J (1979) Multivariate interpolation at arbitrary points made simple. Z Angew Math Phys ZAMP 30(2):292–304

    Article  MathSciNet  MATH  Google Scholar 

  • Mercer J (1909) Xvi functions of positive and negative type, and their connection the theory of integral equations. Philos Trans R Soc Lond Ser A 209(441–458):415–446 (containing papers of a mathematical or physical character)

    MATH  Google Scholar 

  • Micchelli CA (1986) Interpolation of scattered data: distance matrices and conditionally positive definite functions. Constr Approx 2:11–22

    Article  MathSciNet  MATH  Google Scholar 

  • Mirrahimi S (2019) Integro-differential models from ecology and evolutionary biology. Ph.D. Thesis, Université Paul Sabatier (Toulouse 3)

  • Mirzaee F, Samadyar N (2019) On the numerical solution of fractional stochastic integro-differential equations via meshless discrete collocation method based on radial basis functions. Eng Anal Boundary Elem 100:246–255

    Article  MathSciNet  MATH  Google Scholar 

  • Nayroles B, Touzot G, Villon P (1992) Generalizing the finite element method: diffuse approximation and diffuse elements. Comput Mech 10(5):307–318

    Article  MathSciNet  MATH  Google Scholar 

  • Nikan O, Avazzadeh Z (2021) An improved localized radial basis-pseudospectral method for solving fractional reaction–subdiffusion problem. Results Phys 23:104048

    Article  Google Scholar 

  • Nikan O, Avazzadeh Z (2021) Numerical simulation of fractional evolution model arising in viscoelastic mechanics. Appl Numer Math 169:303–320

    Article  MathSciNet  MATH  Google Scholar 

  • Nikan O, Avazzadeh Z, Machado JT (2021) A local stabilized approach for approximating the modified time-fractional diffusion problem arising in heat and mass transfer. J Adv Res

  • Nikan O, Avazzadeh Z, Machado JT (2021) Numerical approach for modeling fractional heat conduction in porous medium with the generalized Cattaneo model. Appl Math Model 100:107–124

    Article  MathSciNet  MATH  Google Scholar 

  • Nikan O, Avazzadeh Z, Machado JT (2021) Numerical approximation of the nonlinear time-fractional telegraph equation arising in neutron transport. Commun Nonlinear Sci Numer Simul 99:105755

    Article  MathSciNet  MATH  Google Scholar 

  • Nikan O, Avazzadeh Z, Machado JT (2021) Numerical study of the nonlinear anomalous reaction–subdiffusion process arising in the electroanalytical chemistry. J Comput Sci 101394

  • Pazouki M, Schaback R (2011) Bases for kernel-based spaces. J Comput Appl Math 236(4):575–588

    Article  MathSciNet  MATH  Google Scholar 

  • Poorooshasb H, Alamgir M, Miura N (1996) Application of an integro-differential equation to the analysis of geotechnical problems. Struct Eng Mech Int J 4(3):227–242

    Article  Google Scholar 

  • Qureshi S, Aziz S (2020) Fractional modeling for a chemical kinetic reaction in a batch reactor via nonlocal operator with power law kernel. Physica A 542:123494

    Article  MathSciNet  MATH  Google Scholar 

  • Rashidinia J, Fasshauer GE, Khasi M (2016) A stable method for the evaluation of Gaussian radial basis function solutions of interpolation and collocation problems. Comput Math Appl 72(1):178–193

    Article  MathSciNet  MATH  Google Scholar 

  • Rodríguez N (2015) On an integro-differential model for pest control in a heterogeneous environment. J Math Biol 70(5):1177–1206

    Article  MathSciNet  MATH  Google Scholar 

  • Schoenberg IJ (1938) Metric spaces and completely monotone functions. Ann Math 39:811–841

    Article  MathSciNet  MATH  Google Scholar 

  • Shen J, Tang T (2005) High order numerical methods and algorithms. Chinese Science Press, Abstract and Applied Analysis

  • Shi X, Huang F, Hu H (2019) Convergence analysis of spectral methods for high-order nonlinear Volterra integro-differential equations. Comput Appl Math 38(2):1–21

    Article  MathSciNet  MATH  Google Scholar 

  • Shivanian E (2016) On the convergence analysis, stability, and implementation of meshless local radial point interpolation on a class of three-dimensional wave equations. Int J Numer Methods Eng 105(2):83–110

    Article  MathSciNet  MATH  Google Scholar 

  • Taleei A, Dehghan M (2014) Direct meshless local Petrov–Galerkin method for elliptic interface problems with applications in electrostatic and elastostatic. Comput Methods Appl Mech Eng 278:479–498

    Article  MathSciNet  MATH  Google Scholar 

  • Wahba G (1979) Convergence rates of” thin plate” smoothing splines Wihen the data are noisy. In: Smoothing techniques for curve estimation. Springer, pp 233–245

  • Wang W, Chen Y, Fang H (2019) On the variable two-step IMEX BDF method for parabolic integro-differential equations with nonsmooth initial data arising in finance. SIAM J Numer Anal 57(3):1289–1317

    Article  MathSciNet  MATH  Google Scholar 

  • Yin J, Shi Z, Chen J, Chang B, Yi J (2019) Smooth particle hydrodynamics-based characteristics of a shaped jet from different materials. Strength Mater 51(1):85–94

    Article  Google Scholar 

  • Yu S, Peng M, Cheng H, Cheng Y (2019) The improved element-free Galerkin method for three-dimensional elastoplasticity problems. Eng Anal Boundary Elem 104:215–224

    Article  MathSciNet  MATH  Google Scholar 

Download references

Funding

The authors have not disclosed any funding.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mohammad Reza Yaghouti.

Ethics declarations

Competing interests

The authors have not disclosed any competing interests.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Farshadmoghadam, F., Azodi, H.D. & Yaghouti, M.R. An Efficient Alternative Kernel of Gaussian Radial Basis Function for Solving Nonlinear Integro-Differential Equations. Iran J Sci Technol Trans Sci 46, 869–881 (2022). https://doi.org/10.1007/s40995-022-01286-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40995-022-01286-6

Keywords

Mathematics Subject Classification

Navigation