Skip to main content
Log in

Phytosterols in Salvia Seeds: Content and Composition and Correlation with Environmental Parameters

  • Research Paper
  • Published:
Iranian Journal of Science and Technology, Transactions A: Science Aims and scope Submit manuscript

Abstract

The purpose of this study was to determine the oil yield, content and composition of phytosterols in the seeds of six wild-grown Salvia species from Iran, including S. ceratophylla L. (3 populations), S. nemorosa L. (6 populations), S. reuteriana Boiss. (6 populations), S. spinosa L. (5 populations), S. verticillata L. (3 populations) and S. virgata Jacq. (3 populations). We also evaluated the effects of some environmental parameters on their chemical variations and characterized the investigated populations based on the sterol chemo-types. The results showed that seed oil yields ranged between 16.51 and 42.48%, with an average of 28.93%. The total sterol contents in Salvia seeds varied significantly and ranged from 145.13 to 386.75 mg 100g −1oil . β-Sitosterol, campesterol and stigmasterol were the main sterol constituents in all of the Salvia seed oils, with the average values of 60.13%, 27.32% and 12.55% of the total sterols, respectively. Among all the tested species, the highest level of total phytosterol and β-sitosterol contents was obtained for the seeds of S. ceratophylla. Moreover, the percentages of these compounds varied depending on climatic factors such as precipitation, humidity and temperature. The cluster analysis based on the β-sitosterol/campesterol ratio contents of the seeds categorized different populations of Salvia species into three distinct campesterol, β-sitosterol and β-sitosterol-rich chemo-types.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Abbaszadeh S, Radjabian T, Taghizadeh M (2013) Identification and determination of phytosterols in oilseeds of some populations from two Iranian Echium species. Iran J Med Aromat Plant 28(4):741–755

    Google Scholar 

  • Abreu PM, Luis MH (1996) Constituents of Tephrosia uniflora. Nat Prod Lett 9(2):81–86

    Article  Google Scholar 

  • Al-Qudah MA, Al-Jaber HI, Zarga MHA, Orabi STA (2014) Flavonoid and phenolic compounds from Salvia palaestina L. growing wild in Jordan and their antioxidant activities. Phytochemistry 99:115–120

    Article  Google Scholar 

  • Amar S, Becker HC, Möllers C (2008) Genetic variation and genotype × environment interactions of phytosterol content in three doubled haploid populations of winter rapeseed. Crop Sci 48(3):1000–1006

    Article  Google Scholar 

  • Beleggia R, Platani C, Nigro F, De Vita P, Cattivelli L, Papa R (2013) Effect of genotype, environment and genotype-by-environment interaction on metabolite profiling in durum wheat (Triticum durum Desf.) grain. J Cereal Sci 57(2):183–192

    Article  Google Scholar 

  • Brufau G, Canela MA, Rafecas M (2008) Phytosterols: physiologic and metabolic aspects related to cholesterol-lowering properties. Nutr Res 28(4):217–225

    Article  Google Scholar 

  • Chawla R, Sivakumar S, Goel N (2016) Phytosterol and its esters as novel food ingredients: a review. Asian J Dairy Food Res 35(3):217–226

    Article  Google Scholar 

  • Cheikh-Rouhou S, Besbes S, Lognay G, Blecker C, Deroanne C, Attia H (2008) Sterol composition of black cumin (Nigella sativa L.) and Aleppo pine (Pinus halepensis Mill.) seed oils. J Food Compos Anal 21(2):162–168

    Article  Google Scholar 

  • Ciftci ON, Przybylski R, Rudzińska M (2012) Lipid components of flax, perilla, and chia seeds. Eur J Lipid Sci Technol 114(7):794–800

    Article  Google Scholar 

  • Daoued K, Chouaibi M, Gaout N, Haj OB, Hamdi S (2016) Chemical composition and antioxidant activities of cold pressed lentisc (Pistacia lentiscus L.) seed oil. Riv Ital Sostanze Gr 93(1):31–38

    Google Scholar 

  • Fernández-Cuesta A, Nabloussi A, Fernández-Martínez JM, Velasco L (2012) Tocopherols and phytosterols in sunflower seeds for the human food market. Grasas Aceites 63(3):321–327

    Article  Google Scholar 

  • Górnaś P, Rudzińska M, Segliņa D (2014) Lipophilic composition of eleven apple seed oils: a promising source of unconventional oil from industry by-products. Ind Crop Prod 60:86–91

    Article  Google Scholar 

  • Górnaś P, Rudzińska M, Raczyk M, Mišina I, Soliven A, Segliņa D (2016a) Composition of bioactive compounds in kernel oils recovered from sour cherry (Prunus cerasus L.) by-products: impact of the cultivar on potential applications. Ind Crop Prod 82:44–50

    Article  Google Scholar 

  • Górnaś P, Rudzińska M, Raczyk M, Mišina I, Soliven A, Lācis G, Segliņa D (2016b) Impact of species and variety on concentrations of minor lipophilic bioactive compounds in oils recovered from plum kernels. J Agric Food Chem 64(4):898–905

    Article  Google Scholar 

  • Górnaś P, Rudzińska M, Raczyk M, Mišina I, Segliņa D (2016c) Impact of cultivar on profile and concentration of lipophilic bioactive compounds in kernel oils recovered from sweet cherry (Prunus avium L.) by-products. Plant Food Hum Nutr 71(2):158–164

    Article  Google Scholar 

  • Gotor AA, Berger M, Labalette F, Centis S, Dayde J, Calmon A (2015) Comparative analysis of fatty acids, tocopherols and phytosterols content in sunflower cultivars (Helianthus annuus) from a three-year multi-local study. Phyton (Buenos Aire). 84:14–25

    Google Scholar 

  • Guye MG (1988) Sterol composition in relation to chill-sensitivity in Phaseolus spp. J Exp Bot 39(8):1091–1096

    Article  Google Scholar 

  • Hammer Ø, Harper D, Ryan P (2001) PAST-palaeontological statistics, ver. 3.15. Palaeontol Electron 4(9)

  • Harrabi S, St-Amand A, Sakouhi F, Sebei K, Kallel H, Mayer PM, Boukhchina S (2008) Phytostanols and phytosterols distributions in corn kernel. Food Chem 111(1):115–120

    Article  Google Scholar 

  • Jiang Y, Wang T (2005) Phytosterols in cereal by-products. J Am Oil Chem Soc 82(6):439–444

    Article  Google Scholar 

  • Jun-Hua H, Yue-Xin Y, Mei-Yuan F (2008) Contents of phytosterols in vegetables and fruits commonly consumed in China. Biomed Environ Sci 21(6):449–453

    Article  Google Scholar 

  • Kalo P, Kuuranne T (2001) Analysis of free and esterified sterols in fats and oils by flash chromatography, gas chromatography and electrospray tandem mass spectrometry. J Chromatogr A 935(1):237–248

    Article  Google Scholar 

  • Kozłowska M, Gruczyńska E, Ścibisz I, Rudzińska M (2016) Fatty acids and sterols composition, and antioxidant activity of oils extracted from plant seeds. Food Chem 213:450–456

    Article  Google Scholar 

  • Kremer D, Bolarić S, Ballian D, Bogunić F, Stešević D, Karlović K, Kosalec I, Vokurka A, Rodríguez JV, Randić M (2015) Morphological, genetic and phytochemical variation of the endemic Teucrium arduini L. (Lamiaceae). Phytochemistry 116:111–119

    Article  Google Scholar 

  • Merah O, Langlade N, Alignan M, Roche J, Pouilly N, Lippi Y, Vear F, Cerny M, Bouniols A, Mouloungui Z (2012) Genetic analysis of phytosterol content in sunflower seeds. Theor Appl Genet 125(8):1589–1601

    Article  Google Scholar 

  • Milovanović M, Banjac N, Vucelić-Radović B (2009) Functional food: rare herbs, seeds and vegetable oils as sources of flavors and phytosterols. J Agric Sci 54(1):81–94

    Google Scholar 

  • Moazaffarian V (2008) A dictionary of Iranian plant names. Farhange Moaser, Tehran

    Google Scholar 

  • Moazzami Farida SH, Radjabian T, Ranjbar M, Salami SA, Rahmani N, Ghorbani A (2016) Fatty acid patterns of seeds of some Salvia species from Iran—a chemotaxonomic approach. Chem Biodivers 13(4):451–458

    Article  Google Scholar 

  • Moghaddam FM, Farimani MM, Salahvarzi S, Amin G (2007) Chemical constituents of dichloromethane extract of cultivated Satureja khuzistanica. Evid Based Alt 4(1):95–98

    Article  Google Scholar 

  • Moharram FA, Marzouk MS, El-Shenawy SM, Gaara AH, El Kady WM (2012) Polyphenolic profile and biological activity of Salvia splendens leaves. J Pharm Pharmacol 64(11):1678–1687

    Article  Google Scholar 

  • Moradkhani S, Ayatollahi AM, Ghanadian M, Moin MR, Razavizadeh M, Shahlaei M (2012) Phytochemical analysis and metal-chelation activity of Achillea tenuifolia Lam. Iran J Pharm Res 11(1):177

    Google Scholar 

  • Mounts T, Abidi S, Rennick K (1996) Effect of genetic modification on the content and composition of bioactive constituents in soybean oil. J Am Oil Chem Soc 73(5):581–586

    Article  Google Scholar 

  • Ogbe RJ, Ochalefu DO, Mafulul G, Olaniru OB (2015) A review on dietary phytosterols: their occurrence, metabolism and health benefits. Asian J Plant Sci Res 5:10–21

    Google Scholar 

  • Phillips KM, Ruggio DM, Toivo JI, Swank MA, Simpkins AH (2002) Free and esterified sterol composition of edible oils and fats. J Food Compos Anal 15(2):123–142

    Article  Google Scholar 

  • Russo A, Formisano C, Rigano D, Senatore F, Delfine S, Cardile V, Rosselli S, Bruno M (2013) Chemical composition and anticancer activity of essential oils of mediterranean sage (Salvia officinalis L.) grown in different environmental conditions. Food Chem Toxicol 55:42–47

    Article  Google Scholar 

  • Schaller H (2004) New aspects of sterol biosynthesis in growth and development of higher plants. Plant Physiol Biochem 42(6):465–476

    Article  Google Scholar 

  • Shahani S, Monsef-Esfahani HR, Saeidnia S, Saniee P, Siavoshi F, Foroumadi A, Samadi N, Gohari AR (2012) Anti-helicobacter pylori activity of the methanolic extract of Geum iranicum and its main compounds. Z Naturforsch C 67(3–4):172–180

    Article  Google Scholar 

  • Velasco L, Fernández-Cuesta Á, García-Ruiz JR, Fernández-Martínez JM, Domínguez-Giménez J (2013) Genetic variation and genotype × environment interactions for seed phytosterols in sunflower. Crop Sci 53(4):1589–1593

    Article  Google Scholar 

  • Vlahakis C, Hazebroek J (2000) Phytosterol accumulation in canola, sunflower, and soybean oils: effects of genetics, planting location, and temperature. J Am Oil Chem Soc 77(1):49–53

    Article  Google Scholar 

  • Walker JB, Sytsma KJ (2007) Staminal evolution in the genus Salvia (Lamiaceae): molecular phylogenetic evidence for multiple origins of the staminal lever. Ann Bot 100(2):375–391

    Article  Google Scholar 

  • Weng J-K, Philippe RN, Noel JP (2012) The rise of chemodiversity in plants. Science 336(6089):1667–1670

    Article  Google Scholar 

  • Whitaker BD (1993) Lipid changes in microsomes and crude plastid fractions during storage of tomato fruits at chilling and nonchilling temperatures. Phytochemistry 32(2):265–271

    Article  MathSciNet  Google Scholar 

  • Yamaya A, Endo Y, Fujimoto K, Kitamura K (2007) Effects of genetic variability and planting location on the phytosterol content and composition in soybean seeds. Food Chem 102(4):1071–1075

    Article  Google Scholar 

  • Yang J, Zhou F, Xiong L, Mao S, Hu Y, Lu B (2015) Comparison of phenolic compounds, tocopherols, phytosterols and antioxidant potential in Zhejiang pecan [Carya cathayensis] at different stir-frying steps. LWT-Food Sci Technol 62(1):541–548

    Article  Google Scholar 

  • Ye J-C, Chang W-C, Hsieh DJ-Y, Hsiao M-W (2010) Extraction and analysis of β-sitosterol in herbal medicines. J Med Plants Res 4(7):522–527

    Google Scholar 

Download references

Acknowledgements

The authors wish to express their gratitude to the Research Councils of Shahed University for financial support during the course of this research. The authors also thank the Central Research Laboratory of Shahed University for GC analyses.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tayebeh Radjabian.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Moazzami Farida, S.H., Radjabian, T. Phytosterols in Salvia Seeds: Content and Composition and Correlation with Environmental Parameters. Iran J Sci Technol Trans Sci 43, 2129–2140 (2019). https://doi.org/10.1007/s40995-019-00721-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40995-019-00721-5

Keywords

Navigation