Skip to main content
Log in

Biocorrosion and Mechanical Properties of ZXM100 and ZXM120 Magnesium Alloys

  • Published:
International Journal of Metalcasting Aims and scope Submit manuscript

Abstract

In this study, as-cast Mg, ZXM100 (1.07Zn–0.21Ca–0.31Mn) and ZXM120 (1.01Zn–1.63Ca–0.30Mn) alloys were produced by gravity die casting method, and microstructure, phase analysis, corrosion and mechanical properties of the alloys were investigated comparatively in order to develop degradable Mg-based biomaterials with improved properties. It is observed that Ca2Mg6Zn3 phase is expected to be present in ZXM100 (1.07Zn–0.21Ca–0.31Mn) alloy totally dissolved in the α-Mg matrix after homogenization heat treatment. However, Mg2Ca phase is expected to be present in ZXM100 (1.07Zn–0.21Ca–0.31Mn) alloy partially dissolved in the α-Mg matrix. Results showed that ZXM100 alloy has a much more homogeneous structure, a better performance, higher corrosion resistance and mechanical properties than those of as-cast Mg and ZXM120 alloy. ZXM100 (0.099 mm/year) alloy has a three times slower corrosion rate than ZXM120 (0.294 mm/year) alloy. It is found that the ZXM100 alloy has closer values to the desired corrosion rate and mechanical properties as a biodegradable implant material.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8
Figure 9

Similar content being viewed by others

References

  1. R. Radha, D. Sreekanth, Insight of magnesium alloys and composites for orthopedic implant applications—a review. J. Magnes. Alloys 5, 286–312 (2017)

    Article  Google Scholar 

  2. S. Agarwal, J. Curtin, B. Duffy, S. Jaiswal, Biodegradable magnesium alloys for orthopaedic applications: a review on corrosion, biocompatibility and surface modifications. Mater. Sci. Eng., C 68, 948–963 (2016)

    Article  Google Scholar 

  3. E. Menthe, A. Bulak, J. Olfe, A. Zimmermann, K.-T. Rie, Improvement of the mechanical properties of austenitic stainless steel after plasma nitriding. Surf. Coat. Technol. 133, 259–263 (2000)

    Article  Google Scholar 

  4. D. Kuroda, M. Niinomi, M. Morinaga, Y. Kato, T. Yashiro, Design and mechanical properties of new β type titanium alloys for implant materials. Mater. Sci. Eng., A 243, 244–249 (1998)

    Article  Google Scholar 

  5. M. Niinomi, Mechanical properties of biomedical titanium alloys. Mater. Sci. Eng., A 243, 231–236 (1998)

    Article  Google Scholar 

  6. D.A. Bridgeport, W.A. Brantley, P.F. Herman, Cobalt-chromium and nickel-chromium alloys for removable prosthodontics, Part 1: mechanical properties. J. Prosthodont. 2, 144–150 (1993)

    Article  Google Scholar 

  7. M.P. Staiger, A.M. Pietak, J. Huadmai, G. Dias, Magnesium and its alloys as orthopedic biomaterials: a review. Biomaterials 27, 1728–1734 (2006)

    Article  Google Scholar 

  8. A. Francis, Y. Yang, S. Virtanen, A.R. Boccaccini, Iron and iron-based alloys for temporary cardiovascular applications. J. Mater. Sci. Mater. Med. 26, 138 (2015)

    Article  Google Scholar 

  9. H. Hermawan, D. Dubé, D. Mantovani, Degradable metallic biomaterials: design and development of Fe–Mn alloys for stents. J. Biomed. Mater. Res. A 93, 1–11 (2010)

    Google Scholar 

  10. D. Vojtěch, J. Kubásek, J. Šerák, P. Novák, Mechanical and corrosion properties of newly developed biodegradable Zn-based alloys for bone fixation. Acta Biomater. 7, 3515–3522 (2011)

    Article  Google Scholar 

  11. H. Ibrahim, A.D. Klarner, B. Poorganji, D. Dean, A.A. Luo, M. Elahinia, Microstructural, mechanical and corrosion characteristics of heat-treated Mg–1.2 Zn–0.5 Ca (wt%) alloy for use as resorbable bone fixation material. J. Mech. Behav. Biomed. Mater. 69, 203–212 (2017)

    Article  Google Scholar 

  12. M.T. Andani, N.S. Moghaddam, C. Haberland, D. Dean, M.J. Miller, M. Elahinia, Metals for bone implants. Part 1. Powder metallurgy and implant rendering. Acta Biomater. 10, 4058–4070 (2014)

    Article  Google Scholar 

  13. M. Erinc, W.H. Sillekens, R. Mannens, R.J. Werkhoven, Applicability of Existing Magnesium Alloys as Biomedical Implant Materials (Magnesium Technology Conference, San Francisco, CA, USA, 2009), pp. 209–214

  14. Y. Chen, Z. Xu, C. Smith, J. Sankar, Recent advances on the development of magnesium alloys for biodegradable implants. Acta Biomater. 10, 4561–4573 (2014)

    Article  Google Scholar 

  15. X. Gu, Y. Zheng, Y. Cheng, S. Zhong, T. Xi, In vitro corrosion and biocompatibility of binary magnesium alloys. Biomaterials 30, 484–498 (2009)

    Article  Google Scholar 

  16. M.M. Avedesian, H. Baker, ASM Specialty Handbook: Magnesium and Magnesium Alloys (ASM International, Novelty, 1999)

    Google Scholar 

  17. S. Zhang, X. Zhang, C. Zhao, J. Li, Y. Song, C. Xie, H. Tao, Y. Zhang, Y. He, Y. Jiang, Research on an Mg–Zn alloy as a degradable biomaterial. Acta Biomater. 6, 626–640 (2010)

    Article  Google Scholar 

  18. J. Gröbner, D. Mirkovic, M. Ohno, R. Schmid-Fetzer, Experimental investigation and thermodynamic calculation of binary Mg–Mn phase equilibria. J. Phase Equilibria Diffus. 26, 234–239 (2005)

    Article  Google Scholar 

  19. C. Jun, Z. Qing, L. Quanan, Microstructure and mechanical properties of AZ61 magnesium alloys with the Y and Ca combined addition. Int. J. Met. 12, 897–905 (2018)

    Google Scholar 

  20. S. Gavras, T. Subroto, R.H. Buzolin, N. Hort, D. Tolnai, The role of Zn additions on the microstructure and mechanical properties of Mg–Nd–Zn Alloys. Int. J. Met. 12, 428–433 (2018)

    Google Scholar 

  21. D.H. Cho, J.H. Nam, B.W. Lee, K.M. Cho, I.M. Park, Effect of Mn addition on grain refinement of biodegradable Mg4Zn0.5Ca alloy. J. Alloys Compd. 676, 461–468 (2016)

    Article  Google Scholar 

  22. F. Rosalbino, S. De Negri, A. Saccone, E. Angelini, S. Delfino, Bio-corrosion characterization of Mg–Zn–X (X = Ca, Mn, Si) alloys for biomedical applications. J. Mater. Sci. Mater. Med. 21, 1091–1098 (2010)

    Article  Google Scholar 

  23. H.R. Bakhsheshi-Rad, M.H. Idris, M.R. Abdul-Kadir, A. Ourdjini, M. Medraj, M. Daroonparvar, E. Hamzah, Mechanical and bio-corrosion properties of quaternary Mg–Ca–Mn–Zn alloys compared with binary Mg–Ca alloys. Mater. Des. 53, 283–292 (2014)

    Article  Google Scholar 

  24. E. Zhang, L. Yang, Microstructure, mechanical properties and bio-corrosion properties of Mg–Zn–Mn–Ca alloy for biomedical application. Mater. Sci. Eng., A 497, 111–118 (2008)

    Article  Google Scholar 

  25. D.H. Cho, B.W. Lee, J.Y. Park, K.M. Cho, I.M. Park, Effect of Mn addition on corrosion properties of biodegradable Mg–4Zn–0.5 Ca–xMn alloys. J. Alloys Compd. 695, 1166–1174 (2017)

    Article  Google Scholar 

  26. F. Czerwinski, The reactive element effect on high-temperature oxidation of magnesium. Int. Mater. Rev. 60, 264–296 (2015)

    Article  Google Scholar 

  27. L. Bichler, A. Elsayed, K. Lee, C. Ravindran, Influence of mold and pouring temperatures on hot tearing susceptibility of az91d magnesium alloy. Int. J. Met. 2, 43–54 (2008)

    Google Scholar 

  28. M. Pokorny, C. Monroe, C. Beckermann, L. Bichler, C. Ravindran, Prediction of hot tear formation in a magnesium alloy permanent mold casting. Int. J. Met. 2, 41–53 (2008)

    Google Scholar 

  29. G. Ballerini, U. Bardi, R. Bignucolo, G. Ceraolo, About some corrosion mechanisms of AZ91D magnesium alloy. Corros. Sci. 47, 2173–2184 (2005)

    Article  Google Scholar 

  30. J.E. Catalano, L.J. Kecskes, A Generic Metallographic Preparation Method for Magnesium Alloys. ARMY RESEARCH LAB ABERDEEN PROVING GROUND MD WEAPONS AND MATERIALS RESEARCH DIRECTORATE (2013)

  31. M. German, International Centre for Diffraction Data (ICDD). Database/PDF No. 49-0335. 1984. Further reference: German M, Kovba L. Russ. J. Inorg. Chem. 30, 317 (1985)

    Google Scholar 

  32. ISO, B.: 6892-2, Metallic Materials Tensile Testing. Part 2: Method of Test at Elevated Temperature (Br. Stand. Inst, London, 2011)

    Google Scholar 

  33. Standard, A. G102-89, Standard Practice for Calculation of Corrosion Rates and Related Information from Electrochemical Measurements. Annual Book of ASTM Standards, vol. 3 (ASTM International, West Conshohocken, 2006)

    Google Scholar 

  34. Internasional, A.: ASTM G31-72, Standard Practice for Laboratory Immersion Corrosion Testing of Metals. United State (2004)

  35. B. Langelier, X. Wang, S. Esmaeili, Evolution of precipitation during non-isothermal ageing of an Mg–Ca–Zn alloy with high Ca content. Mater. Sci. Eng., A 538, 246–251 (2012)

    Article  Google Scholar 

  36. Y. Wang, M. Wei, J. Gao, J. Hu, Y. Zhang, Corrosion process of pure magnesium in simulated body fluid. Mater. Lett. 62, 2181–2184 (2008)

    Article  Google Scholar 

  37. Y. Al-Abdullat, S. Tsutsumi, N. Nakajima, M. Ohta, H. Kuwahara, K. Ikeuchi, Surface modification of magnesium by NaHCO3 and corrosion behavior in Hank’s solution for new biomaterial applications. Mater. Trans. 42, 1777–1780 (2001)

    Article  Google Scholar 

  38. G.Y. Li, J.S. Lian, L.Y. Niu, Z.H. Jiang, Q. Jiang, Growth of zinc phosphate coatings on AZ91D magnesium alloy. Surf. Coat. Technol. 201, 1814–1820 (2006)

    Article  Google Scholar 

  39. Z. Li, X. Gu, S. Lou, Y. Zheng, The development of binary Mg–Ca alloys for use as biodegradable materials within bone. Biomaterials 29, 1329–1344 (2008)

    Article  Google Scholar 

  40. N.N. Aung, W. Zhou, Effect of grain size and twins on corrosion behaviour of AZ31B magnesium alloy. Corros. Sci. 52, 589–594 (2010)

    Article  Google Scholar 

  41. C. Scharf, A. Ditze, A. Shkurankov, E. Morales, C. Blawert, W. Dietzel, K.-U. Kainer, Corrosion of AZ 91 secondary magnesium alloy. Adv. Eng. Mater. 7, 1134–1142 (2005)

    Article  Google Scholar 

  42. Z. Shi, M. Liu, A. Atrens, Measurement of the corrosion rate of magnesium alloys using Tafel extrapolation. Corros. Sci. 52, 579–588 (2010)

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by the Scientific Research Projects Coordination Unit of Karabuk University. Project Number: KBU-BAP-16/2-DR-100.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alper Incesu.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 420 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Incesu, A., Gungor, A. Biocorrosion and Mechanical Properties of ZXM100 and ZXM120 Magnesium Alloys. Inter Metalcast 13, 905–914 (2019). https://doi.org/10.1007/s40962-019-00308-1

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40962-019-00308-1

Keywords

Navigation