Skip to main content
Log in

Identifying Cast Iron Microstructure Variation Using Acoustic Resonance Techniques

  • Published:
International Journal of Metalcasting Aims and scope Submit manuscript

Abstract

Cast iron foundries have historically utilized ultrasonic methods to determine nodularity levels in ductile iron parts. The foundries have begun to search for an alternative that would provide a test of the whole part, while eliminating part preparation, consumables, rust and plating issues and safety hazards. Progress has been made in the application and performance evaluation of resonant acoustic method as an alternative tool for detecting unacceptable levels of nodularity in ductile iron. This paper covers other aspects of cast iron microstructure, namely graphite shape, graphite size and matrix microstructure. To identify cast iron microstructure variation within a thick section, samples from different locations of a thick section (2″) were studied. Finally, a preliminary study of effect of having casting skin on resonant frequency was also conducted. Step block castings were produced with above-mentioned variables. Rectangular samples for resonant inspection were machined. The cast iron samples were excited by a calibrated hammer, and the resonant frequencies (RF) were recorded with an accelerometer. The RF measurements were normalized to eliminate weight change affect. Finite element analysis (FEA) was done to show the minimum level of shift in RF due to dimensional variability. The design of experiment analysis showed that the variations in graphite shape and matrix microstructure are identifiable. The graphite size variation due to section sizes is detectable to a certain extent, i.e., variation between 5/8″ and 1″. However, the result obtained in this study does not support the use of resonant frequency shift to identify samples from section sizes 1″, 2″ and 4″. The RF response showed that the samples with surface condition (presence of skin) variation can be identified for a known graphite shape.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8
Figure 9
Figure 10
Figure 11
Figure 12
Figure 13
Figure 14
Figure 15
Figure 16
Figure 17
Figure 18
Figure 19
Figure 20
Figure 21
Figure 22
Figure 23
Figure 24
Figure 25

Similar content being viewed by others

References

  1. “50th Census of World Casting Production” Modern Casting 106.12 (2016), pp. 25–29

  2. J.R. Davis, ASM Specialty Handbook: Cast Irons (ASM international, Russell, 1996)

    Google Scholar 

  3. Microstructure-and-Porosity-Control, one-page-technology-descriptions, SinterCast (2014)

  4. R.W. Monroe, C.E. Bates, Some thermal and mechanical properties of compacted graphite iron. Trans. Am. Foundrymen’s Soc. 90, 615–624 (1982)

    Google Scholar 

  5. A. Rytter, Vibration based inspection of civil engineering structures, Ph.D. Dissertation, Department of Building Technology and Structural Engineering, Aalborg University, Denmark, 1993

  6. S. Dick, NDT in the Foundry (American Society for Nondestructive Testing, Columbus, 1995)

    Google Scholar 

  7. The Modal Shop, Comparison of Non-Destructive Methods (2017), http://www.modalshop.com/ndt/Comparison-of-Non-Destructive-Methods?ID=256. Accessed 29 May 2017

  8. T. Jennings, Bellfounding (Shire Publications, Princes Risborough, 2010)

    Google Scholar 

  9. J.P. Shull, Nondestructive Evaluation: Theory, Techniques, and Applications (CRC Press, Boca Raton, 2016)

    Google Scholar 

  10. R. Bishop, G. Gladwell, An investigation into the theory of resonance testing. Philos. Trans. R. Soc. Lond. A Math. Phys. Eng. Sci. 255(1055), 241–280 (1963)

    Article  Google Scholar 

  11. K.G. McConnell, P.S. Varoto, Vibration testing: Theory and Practice (Wiley, New York, 2008)

    Google Scholar 

  12. P.J. Emerson, W. Simmons, Final report on the evaluation of the graphite form in ferritic ductile iron by ultrasonic and sonic testing, and the effect of graphite form on mechanical properties. Trans. Am. Foundrymen’s Soc. 84, 109–128 (1976)

    Google Scholar 

  13. A.G. Fuller, Evaluation of the graphite form in pearlitic ductile iron by ultrasonic and sonic testing and the effect of graphite form on mechanical properties, Transactions American Foundrymen’s Society, 1977 AFS Research Reports (1978), pp. 133–150

  14. A.G. Fuller, P.J. Emerson, G.F. Sergeant, A report on the effect upon mechanical properties of variation in graphite form in irons having varying amounts of ferrite and pearlite in the matrix structure and the use of nondestructive tests in the assessments of mechanical properties of such irons. Trans. Am. Foundrymen’s Soc. 84, 21–50 (1980)

    Google Scholar 

  15. E. Plenard, Cast iron damping capacity, structure and property relations, in Congress Papers, 29th International Foundry Congress and Exposition, Detroit, American Foundrymen’s Society, Des Plaines, vol. 111 (1962)

  16. R.D. Adams, N.D. Vaughan, Resonance testing of cast iron. J. Nondestruct. Eval. 2(1), 65–74 (1981)

    Article  Google Scholar 

  17. S.A. Golovin, On the damping capacity of cast irons. Phys. Met. Metallogr. 113(7), 716–720 (2012)

    Article  Google Scholar 

  18. R.W. Bono, G.R. Stultz, Resonant inspection applied to 100% testing of nodularity of cast ductile iron (No. 2008-01-2577). SAE Technical Paper (2008)

  19. A.N. Damir, A. Elkhatib, G. Nassef, Prediction of fatigue life using modal analysis for grey and ductile cast iron. Int. J. Fatigue 29(3), 499–507 (2007)

    Article  Google Scholar 

  20. V.B. Kovacs, G.S. Cole, Interaction of acoustic waves with SG (spheroidal-graphite) iron castings, in Proceedings of 2nd International Symposium on the Metallurgy of Cast Iron (1976), pp. 827–840

  21. A. Białobrzeski, Sonic testing in assessment of casting quality. Arch. Foundry Eng. 8(1), 13–18 (2008)

    Google Scholar 

  22. F. Mampaey, Acoustic resonance analysis for examining the graphite shape in cast iron. Trans. Am. Foundry Soc. 115, 647–663 (2007)

    Google Scholar 

  23. J.M. Song, S.C. Lin, T.S. Lui, L.H. Chen, Y.H. Song, Effects of matrix structure on the resonant vibration behavior of spheroidal graphite cast iron. Mater. Trans. 45(4), 1379–1382 (2004)

    Article  Google Scholar 

  24. P. Beeley, Foundry Technology (Butterworth-Heinemann, Oxford, 2001), p. 506

    Google Scholar 

  25. S. Biswas, Acoustic Resonance Response of Cast Iron, Ph.D. Dissertation, University of Alabama at Birmingham, 2017

  26. J.R. Davis, ASM Specialty Handbook: Cast Irons (Russell, ASM International, 1996), p. 362

    Google Scholar 

  27. ASTM E10, 2017, Standard Test Method for Brinell Hardness of Metallic Materials, American Society of Testing and Materials

  28. B.R. Patterson, C.E. Bates, Nondestructive property prediction in gray cast iron using ultrasonic techniques. Trans. Am. Foundrymen’s Soc. 89, 369–378 (1981)

    Google Scholar 

  29. H. Li, R.D. Griffin, C.E. Bates, Gray iron property measurements using ultrasonic techniques. Trans. Am. Foundry Soc. 125, 05 (2005)

    Google Scholar 

  30. J. Fowler, D.M. Stefanescu, T. Prucha, Production of ferritic and pearlitic grades of compacted graphite cast iron by the in-mold process. Trans. Am. Foundrymen’s Soc. 92, 361–372 (1984)

    Google Scholar 

  31. The Modal Shop, Inc., Model NDT-TS1 Test Station (2014)

  32. MATLAB® (2016a) Academic Research, the MathWorks, Inc., Natick, Massachusetts, United States

  33. ANSYS® Workbench Academic Research, Release 18, ANSYS, Inc.

  34. CES Edupack 2016 (Granta Design Limited, 2016), Cambridge, UK

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Siddhartha Biswas.

Appendix

Appendix

Raw data of the rectangular resonance samples studied in the above article.

Sample location ID

Weight (gm)

L (in.)

W (in.)

H (in.)

Peak 1

Peak 2

Peak 3

Peak 4

USV (in./μs)

GI-F (F12)

A1a

318.6

3.506

1.507

0.518

6398

15,949

22,441

27,281

0.164

A2a

318.9

3.518

1.518

0.514

6281

15,738

22,336

26,930

0.164

B1a

315.4

3.509

1.526

0.51

5977

14,941

21,246

25,582

0.163

B2a

316.7

3.508

1.530

0.51

5977

15,000

21,246

25,570

0.161

C1a

316.7

3.510

1.504

0.519

6188

15,469

21,727

26,578

0.164

C1b

304.2

3.505

1.507

0.499

5930

14,906

21,480

25,734

0.166

C1c

307.6

3.505

1.502

0.505

6000

15,047

21,480

25,910

0.166

C2a

302.5

3.509

1.500

0.501

5965

15,012

21,680

26,016

0.170

C2b

304.0

3.509

1.497

0.502

5965

14,988

21,504

25,922

0.169

C2c

311.3

3.509

1.497

0.515

6082

15,234

21,492

26,203

0.160

D1a

305.3

3.510

1.511

0.502

6047

15,223

21,598

26,203

0.165

D1b

301.2

3.508

1.505

0.496

5941

14,965

21,105

25,781

0.161

D1c

302.2

3.509

1.505

0.496

5953

14,965

21,141

25,770

0.157

D2a

309.9

3.510

1.500

0.514

5953

14,988

21,551

25,828

0.162

D2b

311.1

3.510

1.500

0.513

5754

14,508

21,070

25,113

0.165

D2c

310.6

3.511

1.501

0.513

5813

14,648

21,223

26,296

0.163

GI-P (P12)

A1a

315.9

3.486

1.504

0.513

6609

16,465

23,262

28,172

0.181

A2a

315.3

3.489

1.507

0.51

6563

16,371

23,250

27,996

0.180

B1a

310.9

3.51

1.503

0.504

6305

15,797

22,699

27,199

0.183

B2a

308.6

3.51

1.492

0.503

6328

15,832

22,805

27,352

0.182

C1a

310.6

3.508

1.51

0.501

6270

15,727

22,676

27,047

0.183

C1b

308.5

3.507

1.51

0.498

6141

15,434

22,313

26,590

0.181

C1c

312.4

3.506

1.511

0.502

6328

15,832

22,793

27,176

0.185

C2a

313.7

3.499

1.509

0.505

6398

16,020

22,910

27,398

0.180

C2b

315.1

3.498

1.507

0.509

6375

15,949

22,758

27,328

0.184

C2c

303.1

3.498

1.504

0.491

6223

15,621

22,863

26,988

0.182

D1a

309.9

3.505

1.492

0.505

6375

15,914

22,746

27,363

0.181

D1b

309.9

3.503

1.494

0.506

6258

15,738

22,453

27,082

0.180

D1c

310.4

3.504

1.489

0.506

6246

15,703

22,336

27,047

0.178

D2a

300.3

3.507

1.499

0.49

6164

15,539

22723

26,777

0.181

D2b

302.8

3.504

1.497

0.493

6152

15,434

22,453

26,637

0.180

D2c

311.4

3.503

1.497

0.507

6305

15,750

22,441

27,059

0.180

CGI-F (F31)

A1a

316.9

3.503

1.514

0.515

7664

19,102

26,988

32,484

0.218

A2a

318.8

3.503

1.52

0.515

7664

19,090

26,988

32,391

0.217

B1a

310.3

3.514

1.514

0.508

7441

18,586

26,648

31,758

0.215

B2a

304.9

3.499

1.508

0.504

7406

18,516

26,742

31,617

0.215

C1a

304.9

3.515

1.499

0.502

7324

18,305

26,531

31,465

0.214

C1b

311.9

3.515

1.498

0.515

7488

18,645

26,555

31,957

0.216

C1c

305.5

3.515

1.497

0.504

7371

18,410

26,590

31,629

0.214

C2a

309.3

3.515

1.502

0.511

7418

18,516

26,602

31,746

0.215

C2b

301.9

3.515

1.507

0.499

7266

18,188

26,602

31,301

0.216

C2c

308.4

3.514

1.503

0.506

7395

18,457

26,578

31,641

0.214

D1a

316.4

3.494

1.514

0.522

7605

18,891

26,695

32,086

0.215

D1b

308.5

3.495

1.518

0.503

7430

18,539

26,695

31,500

0.214

D1c

305.7

3.495

1.506

0.502

7406

18,492

26,684

31,605

0.215

D1d

305.3

3.498

1.505

0.503

7395

18,469

26,695

31,547

0.216

D2a

310.8

3.491

1.51

0.514

7547

18,820

26,754

32,063

0.215

D2b

305.0

3.487

1.493

0.507

7488

18,656

26,730

31,922

0.214

D2c

309.3

3.498

1.507

0.507

7477

18,645

26,672

31,840

0.213

D2e

311.7

3.497

1.509

0.51

7512

18,691

26,684

31,840

0.213

CGI-P (P31)

A1a

317.7

3.515

1.503

0.517

7523

18,715

26,555

32,133

0.215

A2a

319.4

3.522

1.506

0.516

7453

18,609

26,438

31,992

0.215

B1a

310.2

3.496

1.504

0.505

7453

18,598

26,672

31,852

0.215

B2a

308.8

3.494

1.501

0.507

7453

18,609

26,707

31,863

0.218

C1a

307.9

3.514

1.521

0.494

7277

18,234

26,766

31,102

0.218

C1b

319.1

3.513

1.522

0.513

7512

18,715

26,730

31,828

0.219

C1c

316.7

3.514

1.522

0.508

7430

18,539

26,625

31,617

0.216

C2a

311.4

3.516

1.505

0.505

7336

18,434

26,637

31,570

0.217

C2b

311.0

3.52

1.499

0.506

7418

18,516

26719

31,793

0.216

C2c

308.8

3.518

1.495

0.506

7371

18,410

26,555

31,676

0.216

D1a

310.2

3.51

1.501

0.503

7383

18,469

26,660

31,688

0.214

D1b

312.4

3.51

1.504

0.506

7418

18,598

26,742

31,828

0.217

D1c

310.5

3.514

1.505

0.502

7348

18,469

26,719

31,641

0.217

D1d

320.0

3.512

1.509

0.516

7570

18,855

26,777

32,180

0.217

D1e

317.0

3.517

1.508

0.514

7477

18,621

26,637

31,887

0.217

D2a*

301.7

3.504

1.509

0.495

7195

18,059

26,695

30,938

0.214

D2b

314.4

3.504

1.507

0.507

7500

18,727

26,766

31,992

0.217

D2c

312.3

3.506

1.505

0.504

7477

18,645

26,719

31,887

0.215

D2d

316.3

3.507

1.505

0.51

7547

18,809

26,766

32,109

0.217

D2e*

287.0

3.511

1.505

0.468

6773

17,191

26,484

29,801

0.218

DI-F (F42)

A1a

307.7

3.519

1.462

0.52

7852

19,547

27,609

33,773

0.225

A2a

309.7

3.518

1.484

0.516

7816

19,465

27,609

33,539

0.224

B1a

306.7

3.517

1.503

0.504

7641

19,102

27,609

32,789

0.224

B2a

304.3

3.517

1.494

0.503

7641

19,090

27,621

32,859

0.225

C1a

307.7

3.506

1.513

0.509

7723

19,266

27,645

32,883

0.225

C1b

309.1

3.504

1.511

0.51

7758

19,348

27,715

32,977

0.227

C1c

307.6

3.504

1.513

0.511

7734

19,289

27,715

32,895

0.225

C2a

307.0

3.519

1.507

0.509

7711

19,230

27,621

32,871

0.224

C2b

313.3

3.509

1.508

0.515

7840

19,535

27,703

33,316

0.225

C2c

309.3

3.506

1.508

0.512

7758

19,395

27,691

33,141

0.224

D1a

313.6

3.509

1.517

0.516

7816

19,430

27,633

33,070

0.224

D1b

309.0

3.506

1.516

0.506

7723

19,242

27,680

32,836

0.224

D1c

315.7

3.507

1.517

0.516

7863

19,512

27,668

33,223

0.224

D1d

308.9

3.508

1.515

0.505

7723

19,230

27,668

32,836

0.226

D2a

311.6

3.503

1.514

0.514

7805

19,453

27,680

33,152

0.224

D2b

310.1

3.504

1.514

0.509

7805

19,406

27,715

33,094

0.224

D2c

311.8

3.506

1.513

0.512

7828

19,453

27,703

33,152

0.224

D2d

311.5

3.504

1.513

0.512

7828

19,430

27,727

33,176

0.224

DI-P (P42)

A1a

319.6

3.51

1.509

0.518

7840

19,523

27,633

33,316

0.227

A2a

311.3

3.511

1.48

0.515

7816

19,488

27,598

33,551

0.226

B1a

315.2

3.515

1.507

0.512

7758

19,336

27,656

33,059

0.227

B2a

307.5

3.517

1.503

0.501

7617

19,043

27,668

32,672

0.228

C1a

314.3

3.527

1.513

0.514

7547

18,867

27,246

32,309

0.228

C1b

320.1

3.53

1.505

0.518

7758

19,324

27,469

33,059

0.226

C1c

273.7

3.53

1.499

0.446

6738

17,215

27,480

30,105

0.228

C2a

310.3

3.53

1.516

0.503

7477

18,727

27,375

32,074

0.228

C2b

319.9

3.526

1.514

0.512

7723

19,242

27,504

32,836

0.226

C2c

300.2

3.53

1.512

0.486

7301

18,375

27,504

31,652

0.228

D1a

299.9

3.444

1.505

0.51

7875

19,488

27,598

32,977

0.221

D1b

307.9

3.444

1.507

0.515

8016

19,934

28,137

33,563

0.230

D1c

308.5

3.443

1.507

0.513

8016

19,922

28,125

33,574

0.228

D1d

313.3

3.443

1.504

0.516

8133

20,168

28,137

33,914

0.227

D1e

307.0

3.443

1.506

0.51

7992

19,898

28,125

33,563

0.226

  1. *Samples with one unmachined surface

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Biswas, S., Monroe, C. Identifying Cast Iron Microstructure Variation Using Acoustic Resonance Techniques. Inter Metalcast 13, 26–46 (2019). https://doi.org/10.1007/s40962-018-0241-4

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40962-018-0241-4

Keywords

Navigation