Skip to main content
Log in

A Macro-Econometric VAR Model of India Incorporating Black Income

  • Original Article
  • Published:
Journal of Quantitative Economics Aims and scope Submit manuscript

Abstract

Are there any interrelationships between black income and macroeconomic variables? This question is the main motivation behind this study. The study finds that black income in India influences her key macroeconomic variables such as the consumption, investment, interest rate and inflation rate. The Bounds test of Cointegration and the Vector Error Correction analysis done in the study demonstrate that black income and the mentioned macroeconomic variables are cointegrated. Besides, the study also demonstrates using Granger causality in a VARX framework that there are interrelationships between black income and the mentioned macroeconomic variables. Black income has lagged impact on itself and on investment. Increases in tax rate and government expenditure increase black income. One of the policy conclusions of the study is that black income should be factored-in in the macroeconomic policy formulation in India.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Notes

  1. There are various reasons for why the estimates of black income are difficult to obtain. such as people are usually secretive in declaring their actual income, infirmities in income data, methodological conundrums, conceptual problems, etc.

  2. See Table 1.1, p. 4, National Institute of Financial Management (NIFM) (2012) and Feige (1979)

  3. Schneider et al. (2003, 2010).

  4. Sinha (2015, p. 300, 313).

  5. Ghosh et. al. (2017, p. 17).

  6. Gutmann (1977), Feige (1979), Tanzi (1980), NIPFP (1985), NIFM (2012).

  7. See Sinha (2014), p. 20–54.

  8. See Dasgupta et al. (1989), Montiel et al. (1993, p. 12), Sundaram and Pandit (1976, 1984), Pandit and Sundaram (1985), Acharya and Madhur (1983, 1984), Chugh (1978), Kabra (1982).

  9. See Gupta (1988, p. 304).

  10. The two decades of the ‘70 s and the ‘80 s witnessed significant growth in black income and inflation in the Indian economy.

  11. See Kar (2011), Sinha (2014, p. 20–82) for details.

  12. There could be other arguments such as probability of detection, penalty rate, etc. that would determine black income. These are excluded from this hypothetical model due to the non-availability of data on them.

  13. Crane and Nourzad (1986) term this phenomenon as the “bracket-creep” effect of inflation.

  14. Substitution effect would be positive always because an increase in tax rate would result into higher tax evasion. At higher tax rates, evasion at the margin becomes more profitable. Income effect, on the other hand, could be either positive or negative depending largely on the taxpayer’s attitude towards the risk of detection by the tax authorities. As disposable income reduces with higher tax rates, its effect on evasion would depend on whether risk aversion increases or decreases as income decreases. Lower evasion results when absolute risk aversion increases with fall in income When substitution effect dominates income effect, higher tax rates result into more black income even when Arrow absolute risk aversion holds. But when absolute risk aversion is independent or is a positive function of income, there are no opposing income and substitution effects. Substitution effect is absent if penalties are levied on evaded taxes than on evaded income Arrow Hypothesis.

  15. Yitzhaki (1974)

  16. Bhattacharyya and Ghosh (1998)

  17. op.cit.

  18. It could be spent on consumption of such commodities-for instance, services-that cannot be so easily tracked by the authorities. Incidentally, the services sector of the Indian economy is the fastest growing sector today.

  19. Here real wealth (RM) of the economy is approximated by the real supply of broad money i.e. M3 deflated by the implicit GDP deflator.

  20. Such as non-standard capital equipment in small establishments of the unorganized sector. But “investments out of black saving are quite unlikely to be in the organized sector – public or private – if capital equipment is to be imported under licence or if it is to be produced domestically by large undertakings in public or private sector” (op. cit., p. 125).

  21. Large-scale simultaneous equation models (LSSEM) or structural econometric models, time series models such as unrestricted and structural vector auto regressions (VAR and SVAR) etc., dynamic stochastic general equilibrium (DSGE) model, panel data models. See Garratt et al. (2006, p. 13–31), Dua (2017, p.210) for a comparative analysis of the models.

  22. The flexibility of VAR as an econometric model lies in its handling of the dynamics of its variables that are not only a function of their own lag but lags of other variables also. Variables in a VAR are interdependent on one another and need not be categorised as endogenous and exogenous. Besides, unlike a SEM a VAR is not subjected to either Lucas (1976) critique or Sims (1980) criticism. An unrestricted VAR is more data driven than a SEM, and it imposes no restriction on its variables as in a SEM. Any restriction on its variables, if at all, is imposed at a much later stage of estimation than in a SEM. Such restrictions, namely cointegrations, are only imposed in its structure after identifying them statistically.

  23. See Dua (2017, p. 212, footnote no. 14).

  24. The limited number of data points of 37 years prevents the estimation of a VARX of 10 endogenous variables (YB, CN, I, R, INF, YW, t, G, TB, RM) even with at least 1 lag. Given that the number of parameters in an equation = intercept + (number of variables in the equation) x (number of lags), for the whole VAR (of 10 equations), there would be 110 (11 × 10) parameters that are to be estimated using 37 data points.

  25. See Annexure I for the ARDL specifications of the theoretical Eqs. (1) to (5).

References

  • Acharya, S., and Madhur, S. 1983. Informal Credit Markets and Black Money: Do they Frustrate Monetary Policy. Economic and Political Weekly. 1751–1756.

  • Acharya, S., and S. Madhur. 1984. Informal Credit Markets and Monetary Policy. Economic and Political Weekly 19 (36): 1593–1596.

    Google Scholar 

  • Banerjee, A., R.L. Lumsdaine, and J.H. Stock. 1992. Recursive and Sequential Tests of Unit-Root and the Trend Break Hypotheses. Journal of Business Economics and Statistics 10: 271–287.

    Google Scholar 

  • Belloumi, M. 2012. The Relationship between Trade, FDI and Economic growth in Tunisia: An Application of Autoregressive Distributed Lag Model. Tunisia: Faculty of Economics and Management of Sousse, University of Sousse.

  • Bhattacharyya, D.K., and S. Ghosh. 1998. Corruption in India and the Hidden Economy. Economic and Political Weekly of India 33 (4): 2795–2799.

    Google Scholar 

  • Bowsher, N.N. 1980. The Demand for Currency: Is the Underground Economy Undermining Monetary Policy, Review. Federal Reserve Bank of St. Louis, January, 11–17.

  • Chugh, R.L. 1978. Black Money and the Indian Economy. In India’s Economic Problems, Second edition, ed. J.S. Uppal. New Delhi: Tata McGraw Hill.

  • Crane, S.E., and F. Nourzad. 1986. Inflation and Tax Evasion: An Empirical Analysis. The Review of Economics and Statistics 68: 217–223.

    Article  Google Scholar 

  • Dasgupta, A, Lahiri, R, and Mookherjee, D. 1989. Urban Informal Credit in India. Study prepared for the Asian Development Bank. New Delhi: National Institute of Public Finance and Policy.

  • Doan, T. A. 1992. RATS User’s Manual, III, Estima.

  • Dua, P. 2017. Macroeconomic Modelling and Bayesian Methods. Journal of Quantitative Economics 15: 209–226.

    Article  Google Scholar 

  • Dua, P., Raje, N., and Sahoo, S. (2003). Interest Rate Modelling and Forecasting in India. Mumbai: Development Research Group Study No. 24, Dept. of Economic Analysis and Policy, RBI.

  • Enders, W.E. 2004. Applied Econometric Time Series, 2nd ed. Hoboken: Wiley.

    Google Scholar 

  • Engle, R.F., and C.W.J. Granger. 1987. Cointegration and Error Correction: Representation, estimation and Testing. Econometrica 55: 251–276.

    Article  Google Scholar 

  • Feige, E.L. 1979. How Big Is the Irregular Economy. Challenge 22: 5–13.

    Article  Google Scholar 

  • Fishburn, G. 1981. Tax Evasion and Inflation. Australian Economic Papers 20: 325–332.

    Article  Google Scholar 

  • Garatt, A., K. Lee, M.H. Pesaran, and Y. Shin. 2006. Global and National Macroeconomic Modelling: A Long-Run Structural Approach. Oxford: Oxford University Press.

    Book  Google Scholar 

  • Ghosh, J., C.P. Chandrasekhar, and P. Patnaik. 2017. Demonetisation Decoded: A Critique of India’s Currency Experiment. Milton Park: Routledge.

    Book  Google Scholar 

  • Granger, C.W.J. 1988. Some Recent Developments in a Concept of Causality. Journal of Econometrics 39: 199–211.

    Article  Google Scholar 

  • Gupta, S.B. 1988. Monetary Economics: Institutions, Theory and Policy. New Delhi: Sultan Chand & Co.

    Google Scholar 

  • Gutmann, P.M. 1977. The Subterranean Economy. Financial Analyst Journal 33: 26–27.

    Article  Google Scholar 

  • Hansen, B.E. 2001. The New Econometrics of Structural Change: Dating Breaks in US Labor Productivity. Journal of Economic Perspective 15: 117–128.

    Article  Google Scholar 

  • Harris, R., and R. Sollis. 2003. Applied Time Series Modelling and Forecasting. Hoboken: Wiley.

    Google Scholar 

  • Johansen, S. 1988. Statistical Analysis of Cointegration Vectors. Journal of Economic Dynamics and Control 12: 231–254.

    Article  Google Scholar 

  • Johansen, S., and K. Juselius. 1992. Testing Structural Hypothesis in a Multivariate Cointegration Analysis of the PPP and UIP for UK. Journal of Econometrics 53: 211–244.

    Article  Google Scholar 

  • Kabra, K.N. 1982. The Black Economy in India: Problems and Policies. Delhi: Chanakya Publications.

    Google Scholar 

  • Kar, D. 2011. An Empirical Study on the Transfer of Black Money from India: 1948–2008. Economic and Political Weekly XLVI (15): 45–54.

    Google Scholar 

  • Katz, E., and B. Zilberfarb. 1981. On the Stabilizing Effects of Taxation. Public Finance 2: 286–289.

    Google Scholar 

  • Kumar, A. 1993. The Missing Dimension of Macro Economic Policy Making in India. The Black Economy, mimeo. Working Paper of the DSA, Centre for Economic Studies and Planning. New Delhi: School of Social Sciences, Jawaharlal Nehru University.

  • Kumar, A. 1999. The Black Economy in India. New Delhi: Penguin.

    Google Scholar 

  • Laurent, R.D. 1979. Currency and the Subterranean Economy. Economic Perspectives 3: 3–6.

    Google Scholar 

  • Lucas, R.E. 1976. Econometric Policy Evaluation: A Critique. Carnegie-Rochester Conference Series on Public Policy 1: 19–46.

    Article  Google Scholar 

  • Montiel, P.J., P.R. Agenor, and N.U. Haque. 1993. Informal Financial Markets in Developing Countries: A Macroeconomic Analysis. Oxford: Blackwell.

    Google Scholar 

  • National Institute of Financial Management (NIFM). 2012. Study on Unaccounted Income/Wealth Both Inside and Outside the Country, Draft Report, New Delhi. http://www.nifm.ac.in/site/TopSubmenuDescription.aspx?Name=Reports. Accessed 28 May 2015

  • Pandit, V., and K. Sundaram. 1985. Black Money and Effectiveness of Monetary Policy. Economic and Political Weekly XX (34): 1451–1453.

    Google Scholar 

  • Peacock, A.T., and G.K. Shaw. 1982. Tax Evasion and Revenue Loss. Public Finance 37: 269–278.

    Google Scholar 

  • Perron, P. 1989. The Great Crash, the Oil Price Shock, and the Unit Root Hypothesis. Econometrica 57 (6): 1361–1401.

    Article  Google Scholar 

  • Pesaran, M.H., Y. Shin, and R.J. Smith. 2001. Bounds Testing Approaches to the Analysis of Level Relationships. Journal of Applied Econometrics 16: 3. (Special Issue in the Memory of John Denis Sargan, 1924–1996: Studies in Empirical Macroeconometrics (May–June, 2001), 289–326).

    Google Scholar 

  • Rakshit, M. 1989. Underdevelopment of Commodity, Credit and Land Markets: Some Macroeconomic Implications. In Studies in the Macroeconomics of Developing Countries, ed. Mihir Rakshit. Delhi: Oxford University Press.

  • Ricketts, M. 1984. On the Simple Macroeconomics of Tax Evasion: An Elaboration of the Peacock and Shaw Approach. Public Finance 39: 420–423.

    Google Scholar 

  • Schneider, F., Chaudhuri, K. and S. Chatterjee. 2003. The Size and Development of the Indian Shadow Economy and a Comparison with other 18 Asian Countries: An Empirical Investigation, mimeo., Working Paper No.: 0302, April, Dept. of Economics, Johannes Kepler University, Linz, Austria. (http://www.economics.uni-linz.ac.at/95/&usg=ALkJrhgxdtn9flmXeMSH686qCsZtcLzStA. Accessed 24 Apr 2014.

  • Schneider, F., A. Buehn, and C.E. Montenegro. 2010. New Estimates for the Shadow Economies all over the World. International Economic Journal 24 (4): 443–461.

    Article  Google Scholar 

  • Sims, C.A. 1980. Macroeconomics and Reality. Econometrica 48: 1–48.

    Article  Google Scholar 

  • Sims, C.A., J.H. Stock, and M.W. Watson. 1990. Inference in Linear Time Series Models with Some Unit Roots. Econometrica 58 (1): 113–144.

    Article  Google Scholar 

  • Sinha, T.P. 2014. Impact of Black Economy on the Monetary Sector: A Case Study of India, Unpublished Ph.D. Thesis, CESP, JNU, Delhi.

  • Sinha, T.P. 2015. Has Black Income as a Proportion of GDP in India Declined in the Post-Reform Period? Indian Economic Review L (2): 273–316.

    Google Scholar 

  • Sundaram, K., and V. Pandit. 1976. On Black Money. Indian Economic Review 9 (2): 121–132.

    Google Scholar 

  • Sundaram, K., and V. Pandit. 1984. Informal Credit Markets, Black Money and Monetary Policy: Some Analytical and Empirical Issues. Economic and Political Weekly XXXVI (32): 675–682.

    Google Scholar 

  • Tanzi, V. 1980. The Underground Economy in the U.S.: Estimates and Implications. BNL Quarterly Review 135 (4): 427–453.

    Google Scholar 

  • Vogelsang, T.J., and P. Perron. 1998. Additional Tests for a Unit Root allowing for a Break in the Trend Function at an unknown time. International Economic Review 19 (4): 1073–1100.

    Article  Google Scholar 

  • Yitzhaki, S. 1974. A Note on Income Tax Evasion: A Theoretical Analysis. Journal of Public Economics 3: 201–202.

    Article  Google Scholar 

  • Zivot, E., and D.W.K. Andrews. 1992. Further Evidence on the Great Crash, the Oil-Price Shock and the Unit Root Hypothesis. Journal of Business and Economic Statistics 10 (3): 251–270.

    Google Scholar 

Download references

Acknowledgements

The author is grateful to Prof. K.L. Krishna and to the anonymous referees for their detailed comments on the paper. The author also expresses his gratitude to Dr. Indra Kaul, University of Delhi for many helpful suggestions. The usual disclaimer applies.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to T. P. Sinha.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

The study is based on the Ph.D. thesis of the author submitted to the CESP, JNU in 2014 with Prof. C. P. Chandrasekhar, CESP, Jawaharlal Nehru University, Delhi and Prof. K. L. Krishna, Delhi School of Economics, Delhi, as supervisors.

Annexure I: ARDL Specification of the Model

Annexure I: ARDL Specification of the Model

The ARDL specification of the model used for the Bounds Test of Cointegration is as follows:

$${\bf{Black}}{\rm{ }}\,\,{\bf{Income}}{\rm{ }}\,\,{\bf{function}}:{\rm{YB}}\, = \,\varphi {\rm{ }}\left( {{\rm{INF}},{\rm{ t}},{\rm{ G}},{\rm{ TB}}} \right)$$
(7)
$$ \Delta YB = \alpha_{1.11} + \sum\limits_{i = 1}^{n} {\beta_{1.12i} \Delta YB_{t - i} + } \sum\limits_{i = 1}^{n} {\beta_{1.13i} \Delta INF_{t - i} + \sum\limits_{i = 1}^{n} {\beta_{1.14i} \Delta t_{t - i} + \sum\limits_{i = 1}^{n} {\beta_{1.15i} \Delta G_{t - i} + \sum\limits_{i = 1}^{n} {\beta_{1.16i} } \Delta TB_{t - i} + \delta_{1.11} YB_{t - 1} + \delta_{1.12} INF_{t - 1} + } } } \delta_{1.13} t_{t - 1} + \delta_{1.14} G_{t - 1} + \delta_{1.15} TB_{t - 1} + \varepsilon_{1.1t} $$
(7.1)
$$ \Delta INF = \alpha_{1.21} + \sum\limits_{i = 1}^{n} {\beta_{1.22i} \Delta YB_{t - i} + } \sum\limits_{i = 1}^{n} {\beta_{1.23i} \Delta INF_{t - i} + \sum\limits_{i = 1}^{n} {\beta_{1.24i} \Delta t_{t - i} + \sum\limits_{i = 1}^{n} {\beta_{1.25i} \Delta G_{t - i} + \sum\limits_{i = 1}^{n} {\beta_{1.26i} } \Delta TB_{t - i} + \delta_{1.21} YB_{t - 1} + \delta_{1.22} INF_{t - 1} + } } } \delta_{1.23} t_{t - 1} + \delta_{1.24} G_{t - 1} + \delta_{1.25} TB_{t - 1} + \varepsilon_{1.2t} $$
(7.2)
$$ \Delta t = \alpha_{1.31} + \sum\limits_{i = 1}^{n} {\beta_{1.32i} \Delta YB_{t - i} + } \sum\limits_{i = 1}^{n} {\beta_{1.33i} \Delta INF_{t - i} + \sum\limits_{i = 1}^{n} {\beta_{1.34i} \Delta t_{t - i} + \sum\limits_{i = 1}^{n} {\beta_{1.35i} \Delta G_{t - i} + \sum\limits_{i = 1}^{n} {\beta_{1.36i} } \Delta TB_{t - i} + \delta_{1..31} YB_{t - 1} + \delta_{1.32} INF_{t - 1} + } } } \delta_{1.33} t_{t - 1} + \delta_{1.34} G_{t - 1} + \delta_{1.35} TB_{t - 1} + \varepsilon_{1.3t} $$
(7.3)
$$ \Delta G = \alpha_{1.41} + \sum\limits_{i = 1}^{n} {\beta_{1.42i} \Delta YB_{t - i} + } \sum\limits_{i = 1}^{n} {\beta_{1.43i} \Delta INF_{t - i} + \sum\limits_{i = 1}^{n} {\beta_{1.44i} \Delta t_{t - i} + \sum\limits_{i = 1}^{n} {\beta_{1.45i} \Delta G_{t - i} + \sum\limits_{i = 1}^{n} {\beta_{1.46i} } \Delta TB_{t - i} + \delta_{1.41} YB_{t - 1} + \delta_{1.42} INF_{t - 1} + } } } \delta_{1.43} t_{t - 1} + \delta_{1.44} G_{t - 1} + \delta_{1.45} TB_{t - 1} + \varepsilon_{1.4t} $$
(7.4)
$$ \Delta TB = \alpha_{1.51} + \sum\limits_{i = 1}^{n} {\beta_{1.52i} \Delta YB_{t - i} + } \sum\limits_{i = 1}^{n} {\beta_{1.53i} \Delta INF_{t - i} + \sum\limits_{i = 1}^{n} {\beta_{1.54i} \Delta t_{t - i} + \sum\limits_{i = 1}^{n} {\beta_{1.55i} \Delta G_{t - i} + \sum\limits_{i = 1}^{n} {\beta_{1.56i} } \Delta TB_{t - i} + \delta_{1.51} YB_{t - 1} + \delta_{1.52} INF_{t - 1} + } } } \delta_{1.53} t_{t - 1} + \delta_{1.54} G_{t - 1} + \delta_{1.55} TB_{t - 1} + \varepsilon_{1.5t} $$
(7.5)
$${\bf{Consumption}}{\rm{ }}\,\,{\bf{function}}:{\rm{ CN}}\, = \,{\rm{C }}\left( {{\rm{YW}},{\rm{ YB}},{\rm{ R}},{\rm{ RM}}} \right)$$
(8)
$$ \Delta CN = \alpha_{2.11} + \sum\limits_{i = 1}^{n} {\beta_{2.12i} \Delta CN_{t - i} + } \sum\limits_{i = 1}^{n} {\beta_{2.13i} \Delta YW_{t - i} + \sum\limits_{i = 1}^{n} {\beta_{2.14i} \Delta YB_{t - i} + \sum\limits_{i = 1}^{n} {\beta_{2.15i} \Delta R_{t - i} + \sum\limits_{i = 1}^{n} {\beta_{2.16i} } \Delta RM_{t - i} + \delta_{2.11} CN_{t - 1} + \delta_{2.12} YW_{t - 1} + } } } \delta_{2.13} YB_{t - 1} + \delta_{2.14} R_{t - 1} + \delta_{2.15} RM_{t - 1} + \varepsilon_{2.1t} $$
(8.1)
$$ \Delta YW = \alpha_{2.21} + \sum\limits_{i = 1}^{n} {\beta_{2.22i} \Delta CN_{t - i} + } \sum\limits_{i = 1}^{n} {\beta_{2.23i} \Delta YW_{t - i} + \sum\limits_{i = 1}^{n} {\beta_{2.24i} \Delta YB_{t - i} + \sum\limits_{i = 1}^{n} {\beta_{2.25i} \Delta R_{t - i} + \sum\limits_{i = 1}^{n} {\beta_{2.26i} } \Delta RM_{t - i} + \delta_{2.21} CN_{t - 1} + \delta_{2.22} YW_{t - 1} + } } } \delta_{2.23} YB_{t - 1} + \delta_{2.24} R_{t - 1} + \delta_{2.25} RM_{t - 1} + \varepsilon_{2.2t} $$
(8.2)
$$ \Delta YB = \alpha_{2.31} + \sum\limits_{i = 1}^{n} {\beta_{2.32i} \Delta CN_{t - i} + } \sum\limits_{i = 1}^{n} {\beta_{2.33i} \Delta YW_{t - i} + \sum\limits_{i = 1}^{n} {\beta_{2.34i} \Delta YB_{t - i} + \sum\limits_{i = 1}^{n} {\beta_{2.35i} \Delta R_{t - i} + \sum\limits_{i = 1}^{n} {\beta_{2.36i} } \Delta RM_{t - i} + \delta_{2.31} CN_{t - 1} + \delta_{2.32} YW_{t - 1} + } } } \delta_{2.33} YB_{t - 1} + \delta_{2.34} R_{t - 1} + \delta_{2.35} RM_{t - 1} + \varepsilon_{2.3t} $$
(8.3)
$$ \Delta R = \alpha_{2.41} + \sum\limits_{i = 1}^{n} {\beta_{2.42i} \Delta CN_{t - i} + } \sum\limits_{i = 1}^{n} {\beta_{2.43i} \Delta YW_{t - i} + \sum\limits_{i = 1}^{n} {\beta_{2.44i} \Delta YB_{t - i} + \sum\limits_{i = 1}^{n} {\beta_{2.45i} \Delta R_{t - i} + \sum\limits_{i = 1}^{n} {\beta_{2.46i} } \Delta RM_{t - i} + \delta_{2.41} CN_{t - 1} + \delta_{2.42} YW_{t - 1} + } } } \delta_{2.43} YB_{t - 1} + \delta_{2.44} R_{t - 1} + \delta_{2.45} RM_{t - 1} + \varepsilon_{2.4t} $$
(8.4)
$$ \Delta CN = \alpha_{2.11} + \sum\limits_{i = 1}^{n} {\beta_{2.12i} \Delta CN_{t - i} + } \sum\limits_{i = 1}^{n} {\beta_{2.13i} \Delta YW_{t - i} + \sum\limits_{i = 1}^{n} {\beta_{2.14i} \Delta YB_{t - i} + \sum\limits_{i = 1}^{n} {\beta_{2.15i} \Delta R_{t - i} + \sum\limits_{i = 1}^{n} {\beta_{2.16i} } \Delta RM_{t - i} + \delta_{2.11} CN_{t - 1} + \delta_{2.12} YW_{t - 1} + } } } \delta_{2.13} YB_{t - 1} + \delta_{2.14} R_{t - 1} + \delta_{2.15} RM_{t - 1} + \varepsilon_{2.1t} $$
(8.5)
$${\bf{Investment}}{\rm{ }}\,\,{\bf{function}}:{\rm{ I}}\, = \,{\rm{I }}\left( {{\rm{YW}},{\rm{ YB}},{\rm{ R}}} \right)$$
(9)
$$ \Delta I = \alpha_{3.11} + \sum\limits_{i = 1}^{n} {\beta_{3.12i} \Delta I_{t - i} + } \sum\limits_{i = 1}^{n} {\beta_{3.13i} \Delta YW_{t - i} + \sum\limits_{i = 1}^{n} {\beta_{3.14i} \Delta YB_{t - i} + \sum\limits_{i = 1}^{n} {\beta_{3.15i} \Delta R_{t - i} + \delta_{3.11} I_{t - 1} + \delta_{3.12} YW_{t - 1} + } } } \delta_{3.13} YB_{t - 1} + \delta_{3.14} R_{t - 1} + \varepsilon_{3.1t} $$
(9.1)
$$ \Delta YW = \alpha_{3.21} + \sum\limits_{i = 1}^{n} {\beta_{3.22i} \Delta I_{t - i} + } \sum\limits_{i = 1}^{n} {\beta_{3.23i} \Delta YW_{t - i} + \sum\limits_{i = 1}^{n} {\beta_{3.24i} \Delta YB_{t - i} + \sum\limits_{i = 1}^{n} {\beta_{3.25i} \Delta R_{t - i} + \delta_{3.21} I_{t - 1} + \delta_{3.22} YW_{t - 1} + } } } \delta_{3.23} YB_{t - 1} + \delta_{3.24} R_{t - 1} + \varepsilon_{3.2t} $$
(9.2)
$$ \Delta YB = \alpha_{3.31} + \sum\limits_{i = 1}^{n} {\beta_{3.32i} \Delta I_{t - i} + } \sum\limits_{i = 1}^{n} {\beta_{3.33i} \Delta YW_{t - i} + \sum\limits_{i = 1}^{n} {\beta_{3.34i} \Delta YB_{t - i} + \sum\limits_{i = 1}^{n} {\beta_{3.35i} \Delta R_{t - i} + \delta_{3.31} I_{t - 1} + \delta_{3.32} YW_{t - 1} + } } } \delta_{3.33} YB_{t - 1} + \delta_{3.34} R_{t - 1} + \varepsilon_{3.3t} $$
(9.3)
$$ \Delta R = \alpha_{3.41} + \sum\limits_{i = 1}^{n} {\beta_{3.42i} \Delta I_{t - i} + } \sum\limits_{i = 1}^{n} {\beta_{3.43i} \Delta YW_{t - i} + \sum\limits_{i = 1}^{n} {\beta_{3.44i} \Delta YB_{t - i} + \sum\limits_{i = 1}^{n} {\beta_{3.45i} \Delta R_{t - i} + \delta_{3.41} I_{t - 1} + \delta_{3.42} YW_{t - 1} + } } } \delta_{3.43} YB_{t - 1} + \delta_{3.44} R_{t - 1} + \varepsilon_{3.4t} $$
(9.4)
$${\bf{Real}}{\rm{ }}\,\,{\bf{Interest}}{\rm{ }}\,\,{\bf{Rate}}{\rm{ }}\,\,{\bf{function}}:{\rm{ R}}\, = \,{\rm{R }}\left( {{\rm{YW}},{\rm{ YB}},{\rm{ RM}}} \right)$$
(10)
$$ \Delta R = \alpha_{4.11} + \sum\limits_{i = 1}^{n} {\beta_{4.12i} \Delta R_{t - i} + } \sum\limits_{i = 1}^{n} {\beta_{4.13i} \Delta YW_{t - i} + \sum\limits_{i = 1}^{n} {\beta_{4.14i} \Delta YB_{t - i} + \sum\limits_{i = 1}^{n} {\beta_{4.15i} \Delta RM_{t - i} + \delta_{4.11} R_{t - 1} + \delta_{4.12} YW_{t - 1} + } } } \delta_{4.13} YB_{t - 1} + \delta_{4.14} RM_{t - 1} + \varepsilon_{4.1t} $$
(10.1)
$$ \Delta YW = \alpha_{4.21} + \sum\limits_{i = 1}^{n} {\beta_{4.22i} \Delta R_{t - i} + } \sum\limits_{i = 1}^{n} {\beta_{4.23i} \Delta YW_{t - i} + \sum\limits_{i = 1}^{n} {\beta_{4.24i} \Delta YB_{t - i} + \sum\limits_{i = 1}^{n} {\beta_{4.25i} \Delta RM_{t - i} + \delta_{4.21} R_{t - 1} + \delta_{4.22} YW_{t - 1} + } } } \delta_{4.23} YB_{t - 1} + \delta_{4.24} RM_{t - 1} + \varepsilon_{4.2t} $$
(10.2)
$$ \Delta YB = \alpha_{4.31} + \sum\limits_{i = 1}^{n} {\beta_{4.32i} \Delta R_{t - i} + } \sum\limits_{i = 1}^{n} {\beta_{4.33i} \Delta YW_{t - i} + \sum\limits_{i = 1}^{n} {\beta_{4.34i} \Delta YB_{t - i} + \sum\limits_{i = 1}^{n} {\beta_{4.35i} \Delta RM_{t - i} + \delta_{4.31} R_{t - 1} + \delta_{4.32} YW_{t - 1} + } } } \delta_{4.33} YB_{t - 1} + \delta_{4.34} RM_{t - 1} + \varepsilon_{4.3t} $$
(10.3)
$$ \Delta RM = \alpha_{4.41} + \sum\limits_{i = 1}^{n} {\beta_{4.42i} \Delta R_{t - i} + } \sum\limits_{i = 1}^{n} {\beta_{4.43i} \Delta YW_{t - i} + \sum\limits_{i = 1}^{n} {\beta_{4.44i} \Delta YB_{t - i} + \sum\limits_{i = 1}^{n} {\beta_{4.45i} \Delta RM_{t - i} + \delta_{4.41} R_{t - 1} + \delta_{4.42} YW_{t - 1} + } } } \delta_{4.43} YB_{t - 1} + \delta_{4.44} RM_{t - 1} + \varepsilon_{4.4t} $$
(10.4)
$${\bf{Function}}{\rm{ }}\,\,{\bf{for}}{\rm{ }}\,\,{\bf{Inflation}}\,\,{\rm{ }}{\bf{Rate}}:{\rm{ INF}}\, = \,\pi {\rm{ }}\left( {{\rm{YW}},{\rm{ YB}},{\rm{ M}}} \right)$$
(11)
$$ \Delta INF = \alpha_{5.11} + \sum\limits_{i = 1}^{n} {\beta_{5.12i} \Delta INF_{t - i} + } \sum\limits_{i = 1}^{n} {\beta_{5.13i} \Delta YW_{t - i} + \sum\limits_{i = 1}^{n} {\beta_{5.14i} \Delta YB_{t - i} + \sum\limits_{i = 1}^{n} {\beta_{5.15i} \Delta M_{t - i} + \delta_{5.11} INF_{t - 1} + \delta_{5.12} YW_{t - 1} + } } } \delta_{5.13} YB_{t - 1} + \delta_{5.14} M_{t - 1} + \varepsilon_{5.1t} $$
(11.1)
$$ \Delta YW = \alpha_{5.21} + \sum\limits_{i = 1}^{n} {\beta_{5.22i} \Delta INF_{t - i} + } \sum\limits_{i = 1}^{n} {\beta_{5.23i} \Delta YW_{t - i} + \sum\limits_{i = 1}^{n} {\beta_{5.24i} \Delta YB_{t - i} + \sum\limits_{i = 1}^{n} {\beta_{5.25i} \Delta M_{t - i} + \delta_{5.21} INF_{t - 1} + \delta_{5.22} YW_{t - 1} + } } } \delta_{5.23} YB_{t - 1} + \delta_{5.24} M_{t - 1} + \varepsilon_{5.2t} $$
(11.2)
$$ \Delta YB = \alpha_{5.31} + \sum\limits_{i = 1}^{n} {\beta_{5.32i} \Delta INF_{t - i} + } \sum\limits_{i = 1}^{n} {\beta_{5.33i} \Delta YW_{t - i} + \sum\limits_{i = 1}^{n} {\beta_{5.34i} \Delta YB_{t - i} + \sum\limits_{i = 1}^{n} {\beta_{5.35i} \Delta M_{t - i} + \delta_{5.31} INF_{t - 1} + \delta_{5.32} YW_{t - 1} + } } } \delta_{5.33} YB_{t - 1} + \delta_{5.34} M_{t - 1} + \varepsilon_{5.3t} $$
(11.3)
$$ \Delta M = \alpha_{5.41} + \sum\limits_{i = 1}^{n} {\beta_{5.42i} \Delta INF_{t - i} + } \sum\limits_{i = 1}^{n} {\beta_{5.43i} \Delta YW_{t - i} + \sum\limits_{i = 1}^{n} {\beta_{5.44i} \Delta YB_{t - i} + \sum\limits_{i = 1}^{n} {\beta_{5.45i} \Delta M_{t - i} + \delta_{5.41} INF_{t - 1} + \delta_{5.42} YW_{t - 1} + } } } \delta_{5.43} YB_{t - 1} + \delta_{5.44} M_{t - 1} + \varepsilon_{5.4t} $$
(11.4)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sinha, T.P. A Macro-Econometric VAR Model of India Incorporating Black Income. J. Quant. Econ. 20, 629–660 (2022). https://doi.org/10.1007/s40953-022-00296-w

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40953-022-00296-w

Keywords

JEL Classification

Navigation