Skip to main content
Log in

Generalised Kawada–Satake method for Mackey functors in class field theory

  • Research Article
  • Published:
European Journal of Mathematics Aims and scope Submit manuscript

Abstract

We propose and study a generalised Kawada–Satake method for Mackey functors in the class field theory of positive characteristic. The root of this method is in the use of explicit pairings, such as the Artin–Schreier–Witt pairing, for groups describing abelian extensions. We separate and simplify the algebraic component of the method and discuss a relation between the existence theorem in class field theory and topological reflexivity with respect to the explicit pairing. We apply this method to derive higher local class field theory of positive characteristic, using advanced properties of topological Milnor K-groups of such fields.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Artin, E., Tate, J.T.: Class Field Theory. W.A. Benjamin, New York (1968)

    MATH  Google Scholar 

  2. Chasco, M.J., Dikranjan, D., Martín-Peinador, E.: A survey of reflexivity of abelian topological groups. Topology Appl. 159(9), 2290–2309 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  3. Fesenko, I.: Explicit Constructions in Local Class Field Theory. Ph.D. thesis, St. Petersburg University (1987)

  4. Fesenko, I.B.: Class field theory of multidimensional local fields of characteristic \(0\), with residue field of positive characteristic. St. Petersburg Math. J. 3(3), 649–678 (1992)

    MathSciNet  MATH  Google Scholar 

  5. Fesenko, I.B.: Multidimensional local class field theory. II. St. Petersburg Math. J. 3(5), 1103–1126 (1992)

    MathSciNet  MATH  Google Scholar 

  6. Fesenko, I.B.: Local class field theory: perfect residue field case. Russian Acad. Sci. Izv. Math. 43(1), 65–81 (1994)

    MathSciNet  Google Scholar 

  7. Fesenko, I.B.: Abelian local \(p\)-class field theory. Math. Ann. 301(3), 561–586 (1995)

    Article  MathSciNet  MATH  Google Scholar 

  8. Fesenko, I.B.: On general local reciprocity maps. J. Reine Angew. Math. 473, 207–222 (1996)

    MathSciNet  MATH  Google Scholar 

  9. Fesenko, I.: Noncommutative local reciprocity maps. In: Miyake, K. (ed.) Class Field Theory—Its Centenary and Prospect. Advanced Studies in Pure Mathematics, vol. 30, pp. 63–78. Mathematical Society of Japan, Tokyo (2001). https://www.maths.nottingham.ac.uk/personal/ibf/ncr.pdf

  10. Fesenko, I.: On the image of noncommutative reciprocity map. Homology Homotopy Appl. 7(3), 53–62 (2005). https://www.maths.nottingham.ac.uk/personal/ibf/imn.pdf

  11. Fesenko, I.B.: Sequential topologies and quotients of Milnor \(K\)-groups of higher local fields. St. Petersburg Math. J. 13(3), 485–501 (2002). https://www.maths.nottingham.ac.uk/personal/ibf/stqk.pdf

  12. Fesenko, I.: Parshin’s higher local class field theory in characteristic \(p\). In: Fesenko, I., Kurihara, M. (eds.) Invitation to Higher Local Fields. Geometry and Topology Monographs, vol. 3, pp. 75–79. Geometry and Topology Publications, Coventry (2000). https://msp.org/gtm/2000/03/

  13. Fesenko, I.: Analysis on arithmetic schemes. II. J. \(K\)-Theory 5(3), 437–557 (2010)

  14. Fesenko, I.: Class field theory guidance and three fundamental developments in arithmetic of elliptic curves (2018). https://www.maths.nottingham.ac.uk/personal/ibf/232.pdf

  15. Fesenko, I., Kurihara, M. (eds.): Invitation to Higher Local Fields. Geometry and Topology Monographs, vol. 3. Geometry and Topology Publications, Coventry (2000). https://www.maths.nottingham.ac.uk/personal/ibf/volume.html

  16. Fesenko, I.B., Vostokov, S.V.: Local Fields and Their Extensions. 2nd extended edn. Translations of Mathematical Monographs, vol. 121. American Mathematical Society, Providence (2002). https://www.maths.nottingham.ac.uk/personal/ibf/book/book.html

  17. Ikeda, K.I., Serbest, E.: Fesenko reciprocity map. St. Petersburg Math. J. 20(3), 407–445 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  18. Ikeda, K.I., Serbest, E.: Generalized Fesenko reciprocity map. St. Petersburg Math. J. 20(4), 593–624 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  19. Ikeda, K.I., Serbest, E.: Non-abelian local reciprocity law. Manuscripta Math. 132(1–2), 19–49 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  20. Inaba, E.: On matrix equations for Galois extensions of fields of characteristic p. Nat. Sci. Rep. Ochanomizu Univ. 12(2), 26–36 (1961)

    MathSciNet  MATH  Google Scholar 

  21. Inaba, E.: On generalized Artin–Schreier equations. Nat. Sci. Rep. Ochanomizu Univ. 13(2), 1–13 (1962)

    MathSciNet  MATH  Google Scholar 

  22. Kaplan, S.: Extensions of the Pontrjagin duality, II: direct and inverse limits. Duke Math. J. 17, 419–435 (1950)

    Article  MathSciNet  MATH  Google Scholar 

  23. Kato, K.: A generalization of local class field theory by using K-groups. I. J. Fac. Sci. Univ. Tokyo Sect. IA Math. 26(2), 303–376 (1979)

    MathSciNet  MATH  Google Scholar 

  24. Kato, K.: A generalization of local class field theory by using K-groups. II. J. Fac. Sci. Univ. Tokyo Sect. IA Math. 27(3), 603–683 (1980)

    MathSciNet  MATH  Google Scholar 

  25. Kato, K.: Galois cohomology of complete discrete valuation fields. In: Dennis, R.K. (ed.) Algebraic K-Theory, Part II. Lecture Notes in Mathematics, vol. 967, pp. 215–238. Springer, Berlin (1982)

    Chapter  Google Scholar 

  26. Kato, K., Saito, S.: Two-dimensional class field theory. In: Ihara, Y. (ed.) Galois Groups and Their Representations. Advanced Studies in Pure Mathematics, vol. 2, pp. 103–152. North-Holland, Amsterdam (1983)

    Chapter  Google Scholar 

  27. Kawada, Y.: Class formations. Duke Math. J. 22, 165–177 (1955)

    Article  MathSciNet  MATH  Google Scholar 

  28. Kawada, Y.: Class formations. In: Lewis, D.J. (ed.) 1969 Number Theory Institute. Proceedings of Symposia in Pure Mathematics, vol. 20, pp. 96–114. American Mathematical Society, Providence (1971)

  29. Kawada, Y., Satake, I.: Class formations. II. J. Fac. Sci. Univ. Tokyo Sect. I. 7, 353–389 (1956)

    MathSciNet  MATH  Google Scholar 

  30. Koya, Y.: A generalization of class formation by using hypercohomology. Invent. Math. 101(3), 705–715 (1990)

    Article  MathSciNet  MATH  Google Scholar 

  31. Lang, S.: Algebra. Addison-Wesley, Reading (1965)

    MATH  Google Scholar 

  32. Madunts, A.I., Zhukov, I.B.: Multidimensional complete fields: topology and other basic constructions. In: Proceedings of the St. Petersburg Mathematical Society. vol. 3. American Mathematical Society Translations (Ser. 2), vol. 166, pp. 1–34 (1995)

  33. Mochizuki, Sh.: Topics in absolute anabelian geometry III: global reconstruction algorithms. J. Math. Sci. Univ. Tokyo 22(4), 939–1156 (2015). Available with comments from http://www.kurims.kyoto-u.ac.jp/~motizuki/papers-english.html

  34. Neukirch, J.: Class Field Theory. Grundlehren der Mathematischen Wissenschaften, vol. 280. Springer, Berlin (1986)

    Google Scholar 

  35. Neukirch, J.: Algebraic Number Theory. Grundlehren der Mathematischen Wissenschaften, vol. 322. Springer, Berlin (1999)

    Google Scholar 

  36. Parshin, A.N.: Local class field theory. Proc. Steklov Inst. Math. 165, 157–185 (1985)

    MATH  Google Scholar 

  37. Parshin, A.N.: Galois cohomology and the Brauer group of local fields. Proc. Steklov Inst. Math. 183, 191–201 (1991)

    MATH  Google Scholar 

  38. Sekiguchi, K.: Class field theory of p-extensions over a formal power series field with a p-quasifinite coefficient field. Tokyo J. Math. 6(1), 167–190 (1983)

    Article  MathSciNet  MATH  Google Scholar 

  39. Spieß, M.: Class formations and higher-dimensional local class field theory. J. Number Theory 62(2), 273–283 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  40. Syder, K.: Two-Dimensional Local-Global Class Field Theory in Positive Characteristic. Ph.D. thesis, University of Nottingham (2014). https://arxiv.org/abs/1403.6747

  41. Webb, P.: A Guide to Mackey Functors. http://web.math.rochester.edu/people/faculty/doug/otherpapers/WebbMF.pdf

  42. Weil, A.: Basic Number Theory. Die Grundlehren der Mathematischen Wissenschaften, vol. 144. Springer, New York (1967)

    Google Scholar 

  43. Witt, E.: Der Existenzsatz für abelschen Funktionenkörper. J. Reine Angew. Math. 173, 43–51 (1935)

    MathSciNet  MATH  Google Scholar 

  44. Witt, E.: Konstruktion von galoisschen Körpern der Charakteristik p zu vorgegebener Gruppe der Ordnung \(p^f\). J. Reine Angew. Math. 174, 237–245 (1936)

    MathSciNet  MATH  Google Scholar 

  45. Witt, E.: Zyklische Körper und Algebren der Charakteristik \(p\) vom Grad \(p^n\). J. Reine Anwew. Math. 176, 126–140 (1937)

    MATH  Google Scholar 

  46. Yoon, S.H.: Explicit Class Field Theory: One-Dimensional and Higher-Dimensional. Ph.D. thesis, University of Nottingham (2017)

  47. Zhukov, I.: Milnor and topological \(K\)-groups of higher-dimensional complete fields. St. Petersburg Math. J. 9(1), 69–105 (1998)

    MathSciNet  Google Scholar 

Download references

Acknowledgements

It is our great pleasure to dedicate this paper to Sasha Beilinson whose inspirational mathematical vision and work are beautifully complemented by his compassion, openness and kindness.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ivan B. Fesenko.

Additional information

To Sasha Beilinson on the occasion of his 60th birthday

Work on this paper was partially supported by EPSRC programme Grant ‘Symmetries and Correspondences’ EP/M024830.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Fesenko, I.B., Vostokov, S.V. & Yoon, S.H. Generalised Kawada–Satake method for Mackey functors in class field theory. European Journal of Mathematics 4, 953–987 (2018). https://doi.org/10.1007/s40879-018-0245-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40879-018-0245-x

Keywords

Mathematics Subject Classification

Navigation