Skip to main content

Advertisement

Log in

New applications of Arak’s inequalities to the Littlewood–Offord problem

  • Research Article
  • Published:
European Journal of Mathematics Aims and scope Submit manuscript

Abstract

Let \(X_1,\ldots ,X_n\) be independent identically distributed random variables. In this paper we study the behavior of concentration functions of weighted sums with respect to the arithmetic structure of coefficients \(a_k\) in the context of the Littlewood–Offord problem. In recent papers of Eliseeva, Götze and Zaitsev, we discussed the relations between the inverse principles stated by Nguyen, Tao and Vu and similar principles formulated by Arak in his papers from the 1980’s. In this paper, we will derive some more general and more precise consequences of Arak’s inequalities providing new results in the Littlewood–Offord problem.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Arak, T.V.: On the approximation of \(n\)-fold convolutions of distributions, having a non-negative characteristic functions with accompanying laws. Theory Probab. Appl. 25(2), 221–243 (1981)

    Article  MathSciNet  MATH  Google Scholar 

  2. Arak, T.V.: On the convergence rate in Kolmogorov’s uniform limit theorem I. Theory Probab. Appl. 26(2), 219–239 (1982)

    Article  MATH  Google Scholar 

  3. Arak, T.V., Zaitsev, A.Yu.: Uniform limit theorems for sums of independent random variables. Proc. Steklov Inst. Math. 174, 1–222 (1988)

  4. Eliseeva, Yu.S., Zaitsev, A.Yu.: On the Littlewood–Offord problem. J. Math. Sci. (N.Y.) 214(4), 467–473 (2016)

  5. Erdös, P.: On a lemma of Littlewood and Offord. Bull. Amer. Math. Soc. 51(12), 898–902 (1945)

    Article  MathSciNet  MATH  Google Scholar 

  6. Esseen, C.G.: On the Kolmogorov–Rogozin inequality for the concentration function. Z. Wahrscheinlichkeitstheorie und Verw. Gebiete 5(3), 210–216 (1966)

    Article  MathSciNet  MATH  Google Scholar 

  7. Freiman, G.A.: Foundations of a Structural Theory of Set Addition. Translations of Mathematical Monographs, vol. 37. American Mathematical Society, Providence (1973)

  8. Götze, F., Eliseeva, Yu.S., Zaitsev, A.Yu.: Arak’s inequalities for concentration functions and the Littlewood–Offord problem. Dokl. Math. 93(2), 202–206 (2016)

  9. Götze, F., Eliseeva, Yu.S., Zaitsev, A.Yu.: Arak inequalities for concentration functions and the Littlewood–Offord problem. Teor. Veroyatn. Primen. 62(2), 241–266 (2017) (in Russian)

  10. Green, B.: Notes on progressions and convex geometry (2005). http://people.maths.ox.ac.uk/greenbj/papers/convexnotes.pdf

  11. Hengartner, W., Theodorescu, R.: Concentration Functions. Probability and Mathematical Statistics. Academic Press, New York (1974)

  12. Kolmogorov, A.N.: Two uniform limit theorems for sums of independent random variables. Theory Probab. Appl. 1(4), 384–394 (1956)

    Article  Google Scholar 

  13. Littlewood, J.E., Offord, A.C.: On the number of real roots of a random algebraic equation (III). Rec. Math. [Mat. Sbornik] N.S. 12(54)(3), 277–286 (1943)

    MathSciNet  MATH  Google Scholar 

  14. Nguyen, H., Vu, V.: Optimal inverse Littlewood–Offord theorems. Adv. Math. 226(6), 5298–5319 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  15. Nguyen, H.H., Vu, V.H.: Small ball probability, inverse theorems and applications. In: Lovász, L., Ruzsa, I.Z., Sós, V.T. (eds.) Erdős Centennial Proceeding, Bolyai Society Mathematical Studies, vol. 25, pp. 409–463. Bolyai Mathematical Society, Budapest (2013)

  16. Petrov, V.V.: Sums of Independent Random Variables. Ergebnisse der Mathematik und ihrer Grenzgebiete, vol. 82. Springer, New York (1975)

  17. Tao, T., Vu, V.: Additive Combinatorics. Cambridge Studies in Advanced Mathematics, vol. 105. Cambridge University Press, Cambridge (2006)

  18. Tao, T., Vu, V.: John-type theorems for generalized arithmetic progressions and iterated sumsets. Adv. Math. 219(2), 428–449 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  19. Tao, T., Vu, V.: Inverse Littlewood–Offord theorems and the condition number of random discrete matrices. Ann. Math. 169(2), 595–632 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  20. Tao, T., Vu, V.: A sharp inverse Littlewood–Offord theorem. Random Structures Algorithms 37(4), 525–539 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  21. Zaitsev, A.Yu.: A bound for the maximal probability in the Littlewood–Offord problem. J. Math. Sci. (N.Y.) 219(5), 743–746 (2016)

Download references

Acknowledgements

We are grateful to anonymous reviewers for useful remarks.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Andrei Yu. Zaitsev.

Additional information

The authors were supported by the SFB 701 in Bielefeld and by SPbGU-DFG grant 6.65.37.2017. The second author was supported by grant RFBR 16-01-00367 and by the Program of the Presidium of the Russian Academy of Sciences No. 01 ‘Fundamental Mathematics and its Applications’ under grant PRAS-18-01.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Götze, F., Zaitsev, A.Y. New applications of Arak’s inequalities to the Littlewood–Offord problem. European Journal of Mathematics 4, 639–663 (2018). https://doi.org/10.1007/s40879-018-0215-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40879-018-0215-3

Keywords

Mathematics Subject Classification

Navigation