Skip to main content
Log in

Interaction of surface water waves with a finite dock over two-stepped bottom profile

  • Original Paper
  • Published:
Marine Systems & Ocean Technology Aims and scope Submit manuscript

Abstract

Based on linear water wave theory, scattering of surface waves by a finite dock over two step-type bottom topography is examined. A matched eigenfunction expansion method is employed where both propagating as well as non-propagating modes are considered. The expansion method is applied to the evaluation of the physical quantities, namely, the reflection and transmission coefficients of monochromatic waves caused by the finite dock and the abrupt depth change. These coefficients are validated with the results available in literature for a particular case where a good agreement is achieved. The force and moment on the finite dock are obtained numerically. The effect of various parameters on the reflection coefficient, transmission coefficient, force and moment is studied through different graphs. The energy identity relation, an important factor of the study, is derived and verified. This problem is further generalized to M-steps and the comparison is made between the flat bottom, 2-step bottom and M-steps bottom. The present results are compared with the results available in the literature. In the present study, it is highlighted that the reflection is increasing with increasing the wave number, dock length and width of the step-1 whereas the transmission coefficient is decreasing for the same. Hence, the rigid dock and the two step bottom topography help to create the calm zone in the lee side of the floating rigid dock. This information will be helpful for the marine scientists and engineers while making the breakwaters.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

References

  1. A.E. Heins, Water waves over a channel of finite depth with a dock. Am. J. Math. 70, 730–748 (1948). https://doi.org/10.2307/2372209

    Article  MathSciNet  MATH  Google Scholar 

  2. K. Friedrichs, H. Lewy, The dock problem. Commun. Pure Appl. Math. 1, 135–148 (1948). https://doi.org/10.1002/cpa.3160010203

    Article  MathSciNet  MATH  Google Scholar 

  3. A. Chakrabarti, B.N. Mandal, R. Gayen, The dock problem revisited. Int. J. Math. Math. Sci. 21, 3459–3470 (2005). https://doi.org/10.1155/IJMMS.2005.3459

    Article  MathSciNet  MATH  Google Scholar 

  4. M.D. Haskind, Plane oscillations problem for a plate on the free surface of heavy fluid, Izv. Akad. Nauk. S.S.S.R. Otd. Tech. Nauk. 7 (1942)

  5. R.L. Holford, Short surface waves in the presence of a finite dock. I. Proc. Camb. Philos. Soc. 60, 957–983 (1964). https://doi.org/10.1017/S0305004100038433

    Article  MathSciNet  Google Scholar 

  6. R.L. Holford, Short surface waves in the presence of a finite dock. II. Proc. Camb. Philos. Soc. 60, 985–1012 (1964). https://doi.org/10.1017/S0305004100038445

    Article  MathSciNet  Google Scholar 

  7. C.M. Linton, The finite dock problem. J. Appl. Math. Phys. 52, 640–656 (2001). https://doi.org/10.1007/PL00001565

    Article  MathSciNet  MATH  Google Scholar 

  8. H. Rubin, The dock of finite extent. Commun. Pure Appl. Math. 7, 317–344 (1954). https://doi.org/10.1002/cpa.3160070205

    Article  MathSciNet  MATH  Google Scholar 

  9. A.J. Hermans, Interaction of free-surface waves with a floating dock. J. Eng. Math. 45, 39–53 (2003). https://doi.org/10.1023/A:1022042120610

    Article  MathSciNet  MATH  Google Scholar 

  10. J.W. Miles, Oblique surface-wave diffraction by a cylindrical obstacle. Dyn. Atmos. Oceans 6, 121–123 (1981). https://doi.org/10.1016/0377-0265(81)90019-1

    Article  Google Scholar 

  11. A.G. Davies, The reflection of wave energy by undulations on the seabed. Dyn. Atmos. Oceans 6, 207–232 (1982). https://doi.org/10.1016/0377-0265(82)90029-X

    Article  Google Scholar 

  12. A.G. Davies, A.D. Heathershaw, Surface wave propagation over sinusoidally varying topography. J. Fluid Mech. 144, 419–443 (1984). https://doi.org/10.1017/S0022112084001671

    Article  Google Scholar 

  13. S.C. Martha, S.N. Bora, Oblique surface wave propagation over a small undulation on the bottom of an ocean. Geophys. Astrophys. Fluid Dyn. 101, 65–80 (2007). https://doi.org/10.1080/03091920701208186

    Article  MathSciNet  Google Scholar 

  14. R. Chakraborty, B.N. Mandal, Oblique wave scattering by a rectangular submarine trench. ANZIAM J. 56, 286–298 (2015). https://doi.org/10.1017/S1446181115000024

    Article  MathSciNet  MATH  Google Scholar 

  15. E.F. Bartholomeusz, The reflexion of long waves at a step. Proc. Camb. Philos. Soc. 18, 319–327 (1996). https://doi.org/10.1017/S0305004100033235

    Article  MathSciNet  Google Scholar 

  16. J.N. Newman, Propagation of water waves over an infinite step. J. Fluid Mech. 23, 399–415 (1965). https://doi.org/10.1017/S0022112065001453

    Article  MathSciNet  Google Scholar 

  17. D. Karmakar, T. Sahoo, Gravity wave interaction with floating membrane due to abrupt change in water depth. Ocean Eng. 35, 598–615 (2008). https://doi.org/10.1016/j.oceaneng.2008.01.009

    Article  Google Scholar 

  18. Y. Guo, Y. Liu, X. Meng, Oblique wave scattering by a semi-infinite elastic plate with finite draft floating on a step topography. Acta Oceanol. Sin. 35(7), 113–121 (2016). https://doi.org/10.1007/s13131-015-0760-2

    Article  Google Scholar 

  19. C.C. Tsai, T.W. Hsu, Y.T. Lin, On step approximation for Roseau’s analytical solution of water waves. Math. Prob. Eng. (2011). https://doi.org/10.1155/2011/607196

    Article  MathSciNet  MATH  Google Scholar 

  20. J. Bhattacharjee, C.G. Soares, Oblique wave interaction with a floating structure near a wall with stepped bottom. Ocean Eng. 38(13), 1528–1544 (2011). https://doi.org/10.1016/j.oceaneng.2011.07.011

    Article  Google Scholar 

  21. Manisha, R.B. Kaligatla, T. Sahoo, Effect of bottom undulation for mitigating wave-induced forces on a floating bridge. Wave Motion 89, 166–184 (2019). https://doi.org/10.1016/j.wavemoti.2019.03.007

    Article  MathSciNet  MATH  Google Scholar 

  22. K. Rezanejad, J. Bhattacharjee, C.G. Soares, Stepped sea bottom effects on the efficiency of nearshore oscillating water column device. Ocean Eng. 70, 25–38 (2013). https://doi.org/10.1016/j.oceaneng.2013.05.029

    Article  Google Scholar 

  23. S. Das, S.N. Bora, Reflection of oblique ocean water waves by a vertical porous structure placed on a multi-step impermeable bottom. Appl. Ocean Res. 47, 373–385 (2014). https://doi.org/10.1016/j.apor.2014.07.001

    Article  Google Scholar 

  24. H. Dhillon, S. Banerjea, B.N. Mandal, Water wave scattering by a finite dock over a step-type bottom topography. Ocean Eng. 113, 1–10 (2016). https://doi.org/10.1016/j.oceaneng.2015.12.017

    Article  Google Scholar 

  25. V. Venkateswarlu, D. Karmakar, Wave scattering by vertical porous block placed over flat and elevated seabed. Mar. Syst. Ocean Technol. 14, 85–109 (2019). https://doi.org/10.1007/s40868-019-00058-z

    Article  Google Scholar 

  26. R.B. Kaligatla, N.M. Prasad, S. Tabssum, Oblique interaction between water waves and a partially submerged rectangular breakwater. J. Eng. Mar. Environ. 234(1), 154–169 (2020). https://doi.org/10.1177/1475090219853748

    Article  Google Scholar 

  27. I.-F. Tseng, C.-S. You, C.-C. Tsai, Bragg reflections of oblique water waves by periodic surface-piercing and submerged breakwaters. J. Mar. Sci. Eng. 8, 522 (2020). https://doi.org/10.3390/jmse8070522

    Article  Google Scholar 

  28. M. Hassan, S.N. Bora, M. Biswakarma, Water wave interaction with a pair of floating and submerged coaxial cylinders in uniform water depth. Mar. Syst. Ocean Technol. 15, 188–198 (2020). https://doi.org/10.1007/s40868-020-00082-4

    Article  Google Scholar 

  29. A. Sarkar, S.N. Bora, Hydrodynamic coefficients for a floating semi-porous compound cylinder in finite ocean depth. Mar. Syst. Ocean Technol. 15, 270–285 (2020). https://doi.org/10.1007/s40868-020-00086-0

    Article  Google Scholar 

  30. T.H. Havelock, LIX. Forced surface-waves on water. Philos. Mag. 8, 569–576 (1929). https://doi.org/10.1080/14786441008564913

    Article  MATH  Google Scholar 

  31. D. Das, B.N. Mandal, A. Chakrabarti, Energy identities in water wave theory for free-surface boundary condition with higher-order derivatives. Fluid Dyn. Res. 40, 253–272 (2008). https://doi.org/10.1016/j.fluiddyn.2007.10.002

    Article  MathSciNet  MATH  Google Scholar 

  32. A. Chakrabarti, S.C. Martha, A note on energy-balance relations in surface water wave problems involving floating elastic plates. J. Adv. Res. Appl. Math. 1, 27–34 (2009)

    MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. C. Martha.

Appendix

Appendix

1.1 Derivation of energy identity relation

For derivation of the energy identity for Case-I of the present problem, we use the Green’s integral theorem:

$$\begin{aligned} \int _C \left( \phi \frac{\partial \phi ^*}{\partial n}-\phi ^* \frac{\partial \phi }{\partial n}\right) ds=0 \end{aligned}$$
(A1)

where \(\phi ^*\) is the complex conjugate of \(\phi\), \({\partial }/{\partial n}\) represents the outward normal derivative to the boundary denoted by C of the fluid region

$$\begin{aligned}&y=0 \, (a<x< X); y=0 \, (-a<x< a); y=0 \, (-X<x< -a);\\&x=-X \, (0< y < h_1); \end{aligned}$$
$$\begin{aligned}&y=h_1 \, (-X<x< 0); x=0 \, (h_1< y< h_2); y=h_2 \, (0<x< b);\\&x=b \, (h_2< y < h_3); \end{aligned}$$
$$\begin{aligned}&y=h_3 \, (b<x< X); x=X \, (0<y< h_3). \end{aligned}$$

Then, we take limit as \(X \rightarrow \infty\).

The contributions from the lines \(y=0 \, ( a<x< X); \, y=0 \, (-a<x< a)\) and \(y=0 \, (-X<x< -a)\) are zero.

There are no contributions from the lines \(y=h_1 \,(-X<x< 0); \, x=0 \, (h_1< y< h_2); \, y=h_2\, (0<x< b); \, x=b \, (h_2< y< h_3)\) and \(y=h_3\, (b<x< X)\).

The contribution from the line \(x=-X \,(0< y < h_1)\) is

$$\begin{aligned} i(1-|R|^2)\frac{2k_0h_1+\sinh 2k_0h_1}{2\cosh ^2 k_0h_1}, \end{aligned}$$
(A2)

and from the line \(x=X\, (0< y < h_3)\) is

$$\begin{aligned} -i|T|^2\frac{2p_0h_3+\sinh 2p_0h_3}{2\cosh ^2 p_0h_3}. \end{aligned}$$
(A3)

Hence, on combining all the contributions shown above, the relation (A1) produces the energy balance relation as given by

$$\begin{aligned} |R|^2+J_1|T|^2=1, \end{aligned}$$
(A4)

where \(\displaystyle J_1=\left( \frac{2p_0h_3+\sinh 2p_0h_3}{2k_0h_1+\sinh 2k_0h_1}\right) \left( \frac{2\cosh ^2 k_0h_1}{2\cosh ^2 p_0h_3}\right)\).

Similarly, the energy balance relation can be derived for the Case-II, when the wave is propagating from positive infinity towards the dock and is given by

$$\begin{aligned} |\hat{R}|^2+J_2|\hat{T}|^2=1, \end{aligned}$$
(A5)

where \(\displaystyle J_2=\left( \frac{2k_0h_1+\sinh 2k_0h_1}{2p_0h_3+\sinh 2p_0h_3}\right) \left( \frac{2\cosh ^2 p_0h_3}{2\cosh ^2 k_0h_1}\right)\).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Choudhary, A., Kumar, N. & Martha, S.C. Interaction of surface water waves with a finite dock over two-stepped bottom profile. Mar Syst Ocean Technol 17, 39–52 (2022). https://doi.org/10.1007/s40868-022-00112-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40868-022-00112-3

Keywords

Navigation