Skip to main content
Log in

Large reversible upconversion luminescence modification and 3D optical information storage in femtosecond laser irradiation-subjected photochromic glass

飞秒激光辐照诱导光致变色玻璃中的上转换发光可逆调控和3D光学信息存储

  • Articles
  • Published:
Science China Materials Aims and scope Submit manuscript

Abstract

Fast response, high luminescence contrast, three-dimensional (3D) storage, and nondestructive reading are key factors for the optical storage application of photochromic materials. Femtosecond (fs) laser direct writing technology with multiphoton nonlinear absorption is becoming a useful tool for microprocessing functional units in the 3D space of glass owing to its remarkable advantages, such as a fast processing speed and high processing accuracy. Herein, the photochromism of transparent glass codoped with rare-earth ions was investigated under 800-nm fs laser irradiation, affording a fast response. The photochromic glass achieves an upconversion luminescence (UCL) modification of 92%. The photochromic glass can be bleached back to its original color using heat treatment. The transmittance and UCL modification show excellent reproducibility under alternating stimulations between 800-nm fs laser irradiation and heat treatment. The data can be written in the interior of the transparent photochromic glass using 800-nm fs laser irradiation, facilitating 3D information storage. These results suggest that the 800-nm fs laser irradiation-subjected photochromic glass is an ideal optical data storage medium.

摘要

速响应、 高发光对比度、 三维存储和信息无损读取是光致变色材料光存储应用的几个关键因素. 具有多光子非线性吸收的飞秒激光直写技术以其加工速度快、 加工精度高等独特优势, 正成为玻璃三维空间微加工功能单元的有效工具. 本工作研究了800 nm飞秒激光照射下稀土离子掺杂透明玻璃的光致变色性质, 结果证实在800 nm飞秒激光辐照下玻璃展现了快速光致变色响应. 在光致变色玻璃中实现了92%的上转换发光调控. 光致变色玻璃可通过热刺激漂白回原色, 在800 nm飞秒激光辐照和热处理交替刺激下, 光致变色玻璃的透射率和上转换调控表现出良好的重现性. 通过800 nm飞秒激光照射, 可将数据信息写入透明玻璃内部, 实现三维信息存储. 结果表明, 800 nm飞秒激光辐照诱导的光致变色玻璃是理想的光学数据存储介质.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Gu M, Zhang Q, Lamon S. Nanomaterials for optical data storage. Nat Rev Mater, 2016, 1: 16070

    Article  CAS  Google Scholar 

  2. Zhuang Y, Wang L, Lv Y, et al. Optical data storage and multicolor emission readout on flexible films using deep-trap persistent luminescence materials. Adv Funct Mater, 2018, 28: 1705769

    Article  CAS  Google Scholar 

  3. Gu M, Li X, Cao Y. Optical storage arrays: A perspective for future big data storage. Light Sci Appl, 2014, 3: e177

    Article  CAS  Google Scholar 

  4. Trelles O, Prins P, Snir M, et al. Big data, but are we ready? Nat Rev Genet, 2011, 12: 224

    Article  CAS  Google Scholar 

  5. Zijlstra P, Chon JWM, Gu M. Five-dimensional optical recording mediated by surface plasmons in gold nanorods. Nature, 2009, 459: 410–413

    Article  CAS  Google Scholar 

  6. Zhang J, Gecevičius M, Beresna M, et al. Seemingly unlimited lifetime data storage in nanostructured glass. Phys Rev Lett, 2014, 112: 033901

    Article  CAS  Google Scholar 

  7. Lin S, Lin H, Ma C, et al. High-security-level multi-dimensional optical storage medium: Nanostructured glass embedded with LiGa5O8:Mn2+ with photostimulated luminescence. Light Sci Appl, 2020, 9: 22

    Article  CAS  Google Scholar 

  8. Zhuang Y, Chen D, Chen W, et al. X-ray-charged bright persistent luminescence in NaYF4:Ln3+@NaYF4 nanoparticles for multidimensional optical information storage. Light Sci Appl, 2021, 10: 132

    Article  CAS  Google Scholar 

  9. Zhang Z, Guo L, Sun H, et al. Rare earth orthoniobate photochromics with self-activated upconversion emissions for high-performance optical storage applications. J Mater Chem C, 2021, 9: 13841–13850

    Article  CAS  Google Scholar 

  10. Yang Z, Hu J, Martin LIDJ, et al. Realizing nondestructive luminescence readout in photochromic ceramics via deep ultraviolet excitation for optical information storage. J Mater Chem C, 2021, 9: 14012–14020

    Article  CAS  Google Scholar 

  11. Zhang Y, Luo L, Li K, et al. Reversible up-conversion luminescence modulation based on UV-VIS light-controlled photochromism in Er3+ doped Sr2SnO4. J Mater Chem C, 2018, 6: 13148–13156

    Article  CAS  Google Scholar 

  12. Yang Z, Du J, Martin LIDJ, et al. Designing photochromic materials with large luminescence modulation and strong photochromic efficiency for dual-mode rewritable optical storage. Adv Opt Mater, 2021, 9: 2100669

    Article  CAS  Google Scholar 

  13. Yang Z, Du J, Martin LIDJ, et al. Highly responsive photochromic ceramics for high-contrast rewritable information displays. Laser Photonics Rev, 2021, 15: 2000525

    Article  CAS  Google Scholar 

  14. Bange K. Colouration of tungsten oxide films: A model for optically active coatings. Sol Energy Mater Sol Cells, 1999, 58: 1–131

    Article  CAS  Google Scholar 

  15. He T, Yao J. Photochromism in composite and hybrid materials based on transition-metal oxides and polyoxometalates. Prog Mater Sci, 2006, 51: 810–879

    Article  CAS  Google Scholar 

  16. Wang S, Fan W, Liu Z, et al. Advances on tungsten oxide based photochromic materials: Strategies to improve their photochromic properties. J Mater Chem C, 2019, 7: 10119

    Article  CAS  Google Scholar 

  17. Ren Y, Yang Z, Li M, et al. Reversible upconversion luminescence modification based on photochromism in BaMgSiO4:Yb3+, Tb3+ ceramics for anti-counterfeiting applications. Adv Opt Mater, 2019, 7: 1900213

    Article  CAS  Google Scholar 

  18. Zhu Y, Sun H, Jia Q, et al. Site-selective occupancy of Eu2+ toward high luminescence switching contrast in BaMgSiO4-based photochromic materials. Adv Opt Mater, 2021, 9: 2001626

    Article  CAS  Google Scholar 

  19. Ren Y, Yang Z, Wang Y, et al. Reversible multiplexing for optical information recording, erasing, and reading-out in photochromic BaMgSiO4:Bi3+ luminescence ceramics. Sci China Mater, 2020, 63: 582–592

    Article  CAS  Google Scholar 

  20. Li K, Luo L, Zhang Y, et al. Tunable luminescence contrast in photochromic ceramics (1−x)Na0.5Bi0.5TiO3−xNa0.5K0.5NbO3:0.002Er by an electric field poling. ACS Appl Mater Interfaces, 2018, 10: 41525–41534

    Article  CAS  Google Scholar 

  21. Bai X, Yang Z, Zhan Y, et al. Novel strategy for designing photochromic ceramic: Reversible upconversion luminescence modification and optical information storage application in the PbWO4:Yb3+, Er3+ photochromic ceramic. ACS Appl Mater Interfaces, 2020, 12: 21936–21943

    Article  CAS  Google Scholar 

  22. Lin J, Zhou Y, Lu Q, et al. Reversible modulation of photoenergy in Smdoped (K0.5Na0.5)NbO3 transparent ceramics via photochromic behavior. J Mater Chem A, 2019, 7: 19374–19384

    Article  CAS  Google Scholar 

  23. Smith AT, Ding H, Gorski A, et al. Multi-color reversible photochromisms via tunable light-dependent responses. Matter, 2020, 2: 680–696

    Article  Google Scholar 

  24. Ruan J, Yang Z, Wen Y, et al. Laser induced thermochromism and reversible upconversion emission modulation of a novel WO3:Yb3+, Er3+ ceramic: Dual-modal fingerprint acquisition application. Chem Eng J, 2020, 383: 123180

    Article  CAS  Google Scholar 

  25. Lv Y, Zhang S, Li Z, et al. Reversible multiplexing optical information storage and photoluminescence switching in Eu2+-doped fluorophosphate-based tunable photochromic materials. J Mater Chem C, 2021, 9: 5930–5944

    Article  CAS  Google Scholar 

  26. Wei T, Jia B, Shen L, et al. A new class of upconversion luminescence tuning materials based on non-photochromic reaction: Er3+-activated Ba0.7Sr0.3Nb2O6 ferroelectrics. Acta Mater, 2021, 205: 116557

    Article  CAS  Google Scholar 

  27. Chai J, Shao Z, Wang H, et al. Ultrafast processes in photochromic material YHxOy, studied by excited-state density functional theory simulation. Sci China Mater, 2020, 63: 1579–1587

    Article  CAS  Google Scholar 

  28. Huang X, Guo Q, Kang S, et al. Three-dimensional laser-assisted patterning of blue-emissive metal halide perovskite nanocrystals inside a glass with switchable photoluminescence. ACS Nano, 2020, 14: 3150–3158

    Article  CAS  Google Scholar 

  29. Arora S, Bauer T, Barczyk R, et al. Direct quantification of topological protection in symmetry-protected photonic edge states at telecom wavelengths. Light Sci Appl, 2021, 10: 9

    Article  CAS  Google Scholar 

  30. Kärnbratt J, Hammarson M, Li S, et al. Photochromic supramolecular memory with nondestructive readout. Angew Chem Int Ed, 2010, 49: 1854–1857

    Article  CAS  Google Scholar 

  31. Zhang C, Zhou HP, Liao LY, et al. Luminescence modulation of ordered upconversion nanopatterns by a photochromic diarylethene: Rewritable optical storage with nondestructive readout. Adv Mater, 2010, 22: 633–637

    Article  CAS  Google Scholar 

  32. Haase M, Schäfer H. Upconverting nanoparticles. Angew Chem Int Ed, 2011, 50: 5808–5829

    Article  CAS  Google Scholar 

  33. Wilhelm S. Perspectives for upconverting nanoparticles. ACS Nano, 2017, 11: 10644–10653

    Article  CAS  Google Scholar 

  34. Liu Y, Lu Y, Yang X, et al. Amplified stimulated emission in upcon-version nanoparticles for super-resolution nanoscopy. Nature, 2017, 543: 229–233

    Article  CAS  Google Scholar 

  35. Yau Y, Zeighami Y, Baker TE, et al. Network connectivity determines cortical thinning in early Parkinson’s disease progression. Nat Commun, 2018, 9: 12

    Article  CAS  Google Scholar 

  36. Zhang Q, Yue S, Sun H, et al. Nondestructive up-conversion readout in Er/Yb co-doped Na0.5Bi2.5Nb2O9-based optical storage materials for optical data storage device applications. J Mater Chem C, 2017, 5: 3838–3847

    Article  CAS  Google Scholar 

  37. Tan D, Sharafudeen KN, Yue Y, et al. Femtosecond laser induced phenomena in transparent solid materials: Fundamentals and applications. Prog Mater Sci, 2016, 76: 154–228

    Article  Google Scholar 

  38. Porfirev AP, Ustinov AV, Khonina SN. Polarization conversion when focusing cylindrically polarized vortex beams. Sci Rep, 2016, 6: 6

    Article  CAS  Google Scholar 

  39. Zhang B, Wang L, Chen F. Recent advances in femtosecond laser processing of LiNbO3 crystals for photonic applications. Laser Photonics Rev, 2020, 14: 1900407

    Article  CAS  Google Scholar 

  40. Chai N, Liu Y, Yue Y, et al. 3D nonlinear photolithography of tin oxide ceramics via femtosecond laser. Sci China Mater, 2021, 64: 1477–1484

    Article  CAS  Google Scholar 

  41. Huang X, Guo Q, Yang D, et al. Reversible 3D laser printing of perovskite quantum dots inside a transparent medium. Nat Photonics, 2019, 14: 82–88

    Article  CAS  Google Scholar 

  42. Sun H, Li X, Zhu Y, et al. Achieving multicolor emission readout and tunable photoswitching via multiplexing of dual lanthanides in ferroelectric oxides. J Mater Chem C, 2019, 7: 5782–5791

    Article  CAS  Google Scholar 

  43. Chen M, Lin X, Dinh TH, et al. Configurable phonon polaritons in twisted α-MoO3. Nat Mater, 2020, 19: 1307–1311

    Article  CAS  Google Scholar 

  44. He Y, Wu Z, Fu L, et al. Photochromism and size effect of WO3 and WO3-TiO2 aqueous sol. Chem Mater, 2003, 15: 4039–4045

    Article  CAS  Google Scholar 

  45. Dachraoui H, Rupp RA, Lengyel K, et al. Photochromism of doped terbium gallium garnet. Phys Rev B, 2006, 74: 144104

    Article  CAS  Google Scholar 

  46. Baum F, Pretto T, Brolo AG, et al. Uncovering the mechanism for the formation of copper thioantimonate (SbV) nanoparticles and its transition to thioantimonide (SbIII). Cryst Growth Des, 2018, 18: 6521–6527

    Article  CAS  Google Scholar 

  47. Sokolov AV, Walker DR, Yavuz DD, et al. Femtosecond light source for phase-controlled multiphoton ionization. Phys Rev Lett, 2001, 87: 033402

    Article  CAS  Google Scholar 

  48. Liu B, Wang J, Wu J, et al. Proton exchange growth to mesoporous WO3·0.33H2O structure with highly photochromic sensitivity. Mater Lett, 2013, 91: 334–337

    Article  CAS  Google Scholar 

  49. He T, Yao J. Photochromism of molybdenum oxide. J Photochem Photobiol C-Photochem Rev, 2003, 4: 125–143

    Article  CAS  Google Scholar 

  50. Poirier G, Nalin M, Cescato L, et al. Bulk photochromism in a tung-state-phosphate glass: A new optical memory material? J Chem Phys, 2006, 125: 161101

    Article  CAS  Google Scholar 

  51. Poirier G, Nalin M, Messaddeq Y, et al. Photochromic properties of tungstate-based glasses. Solid State Ion, 2007, 178: 871–875

    Article  CAS  Google Scholar 

  52. Poirier G, Messaddeq Y, Ribeiro SJL, et al. Structural study of tungstate fluorophosphate glasses by Raman and X-ray absorption spectroscopy. J Solid State Chem, 2005, 178: 1533–1538

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China (51762029), the Applied Basic Research Key Program of Yunnan Province (2018FA026), and the Key Project of the National Natural Science Foundation of China-Yunnan Joint Fund (U2102215).

Author information

Authors and Affiliations

Authors

Contributions

Author contributions Yang Z and Dong G conceived, designed, and supervised the overall project. Xiao D and Huang X performed the experiments. All the authors discussed the results and commented on the manuscript.

Corresponding authors

Correspondence to Guoping Dong  (董国平) or Zhengwen Yang  (杨正文).

Ethics declarations

Conflict of interest The authors declare that they have no conflict of interest.

Additional information

Supplementary information Supporting data are available in the online version of the paper.

Daiwen Xiao is currently a graduate student at Kunming University of Science and Technology under the supervision of Prof. Zhengwen Yang. His current interest includes the fabrication of photochromic glass for optical storage applications.

Zhengwen Yang is currently a professor at the College of Materials Science and Engineering, Kunming University of Science and Technology. He obtained his bachelor’s degree in 2002 and master’s degree in 2005 from Jilin University, respectively. He received his PhD degree from Tsinghua University in 2009. His research interests include the modification and enhancement of upconversion luminescence.

Supporting information

40843_2021_1932_MOESM1_ESM.pdf

Large reversible upconversion luminescence modification and 3D optical information storage in femtosecond laser irradiation-subjected photochromic glass

Supplementary material, approximately 7.73 MB.

Supplementary material, approximately 4.41 MB.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Xiao, D., Huang, X., Cun, Y. et al. Large reversible upconversion luminescence modification and 3D optical information storage in femtosecond laser irradiation-subjected photochromic glass. Sci. China Mater. 65, 1586–1593 (2022). https://doi.org/10.1007/s40843-021-1932-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40843-021-1932-y

Keywords

Navigation