Skip to main content
Log in

Oxygen vacancy-expedited ion diffusivity in transition-metal oxides for high-performance lithium-ion batteries

氧空位提高金属氧化物锂离子扩散动力学及储锂性能

  • Articles
  • Published:
Science China Materials Aims and scope Submit manuscript

Abstract

Rapid capacity decay and inferior kinetics are the vital issues of anodes in the conversion reaction for lithium-ion batteries. Vacancy engineering can efficiently modulate the intrinsic properties of transition-metal oxide (TMO)-based electrode materials, but the effect of oxygen vacancies on electrode performance remains unclear. Herein, abundant oxygen vacancies are in situ introduced into the lattice of different TMOs (e.g., Co3O4, Fe2O3, and NiO) via a facile hydrothermal treatment combined with calcination. Taking Co3O4 as a typical example, results prove that the oxygen vacancies in Co3O4−x effectively accelerate charge transfer at the interface and significantly increase electrical conductivity and pseudocapacitance contribution. The Li-ion diffusion coefficient of Co3O4−x is remarkably improved by two orders of magnitude compared with that of Co3O4. Theoretical calculations reveal that Co3O4−x has a lower Li-insertion energy barrier and more density of states around the Fermi level than Co3O4, which is favorable for ion and electron transport. Therefore, TMOs with rich vacancies exhibit superior cycling performance and enhanced rate capability over their counterparts. This strategy regulating the reaction kinetics would provide inspiration for designing other TMO-based electrodes for energy applications.

摘要

转化反应过程中锂离子电池负极材料面临容量快速衰减和动力学缓慢的问题. 氧空位缺陷可以有效调节过渡金属氧化物(TMO)基电极材料的内在特性, 但是, 氧空位对电极材料性能的影响机制尚不清楚. 本研究通过简单的方法, 将丰富的氧空位原位引入到不同TMO(例如Co3O4、 Fe2O3和NiO)的晶格中. 以Co3O4为例, Co3O4−x中的氧空位能够有效加快界面处的电荷转移, 显著提高电导率和赝电容贡献. 理论计算表明, 氧空位的引入能够降低锂嵌入能垒, 且增加费米能级附近的态密度, 有利于离子和电子传输. 因此, 富含氧空位的TMO表现出更优异的循环稳定性和倍率性能. 本研究可以为设计用于能源应用的其他TMO电极材料提供参考.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Goodenough JB, Park KS. The Li-ion rechargeable battery: A perspective. J Am Chem Soc, 2013, 135: 1167–1176

    Article  CAS  Google Scholar 

  2. Lu J, Chen Z, Ma Z, et al. The role of nanotechnology in the development of battery materials for electric vehicles. Nat Nanotech, 2016, 11: 1031–1038

    Article  CAS  Google Scholar 

  3. Sun Y, Liu N, Cui Y. Promises and challenges of nanomaterials for lithium-based rechargeable batteries. Nat Energy, 2016, 1: 16071

    Article  CAS  Google Scholar 

  4. Zhang B, Xia G, Chen W, et al. Controlled-size hollow magnesium sulfide nanocrystals anchored on graphene for advanced lithium storage. ACS Nano, 2018, 12: 12741–12750

    Article  CAS  Google Scholar 

  5. Zheng M, Tang H, Li L, et al. Hierarchically nanostructured transition metal oxides for lithium-ion batteries. Adv Sci, 2018, 5: 1700592

    Article  CAS  Google Scholar 

  6. Reddy MV, Rao GVS, Chowdari BVR. Metal oxides and oxysalts as anode materials for Li ion batteries. Chem Rev, 2013, 113: 5364–5457

    Article  CAS  Google Scholar 

  7. Zhao Y, Li X, Yan B, et al. Recent developments and understanding of novel mixed transition-metal oxides as anodes in lithium ion batteries. Adv Energy Mater, 2016, 6: 1502175

    Article  CAS  Google Scholar 

  8. Wang J, Yang N, Tang H, et al. Accurate control of multishelled Co3O4 hollow microspheres as high-performance anode materials in lithiumion batteries. Angew Chem Int Ed, 2013, 52: 6417–6420

    Article  CAS  Google Scholar 

  9. Lu Y, Yu L, Wu M, et al. Construction of complex Co3O4@Co3V2O8 hollow structures from metal-organic frameworks with enhanced lithium storage properties. Adv Mater, 2018, 30: 1702875

    Article  CAS  Google Scholar 

  10. Wu LL, Wang Z, Long Y, et al. Multishelled NixCo3−xO4 hollow microspheres derived from bimetal-organic frameworks as anode materials for high-performance lithium-ion batteries. Small, 2017, 13: 1604270

    Article  CAS  Google Scholar 

  11. Fang S, Bresser D, Passerini S. Transition metal oxide anodes for electrochemical energy storage in lithium- and sodium-ion batteries. Adv Energy Mater, 2019, 10: 1902485

    Article  CAS  Google Scholar 

  12. Li WY, Xu LN, Chen J. Co3O4 nanomaterials in lithium-ion batteries and gas sensors. Adv Funct Mater, 2005, 15: 851–857

    Article  CAS  Google Scholar 

  13. Wu ZS, Ren W, Wen L, et al. Graphene anchored with Co3O4 nanoparticles as anode of lithium ion batteries with enhanced reversible capacity and cyclic performance. ACS Nano, 2010, 4: 3187–3194

    Article  CAS  Google Scholar 

  14. Huang Y, Fang Y, Lu XF, et al. Co3O4 hollow nanoparticles embedded in mesoporous walls of carbon nanoboxes for efficient lithium storage. Angew Chem Int Ed, 2020, 59: 19914–19918

    Article  CAS  Google Scholar 

  15. Zhao Y, Dong W, Riaz MS, et al. “Electron-sharing” mechanism promotes Co@Co3O4/CNTs composite as the high-capacity anode material of lithium-ion battery. ACS Appl Mater Interfaces, 2018, 10: 43641–43649

    Article  CAS  Google Scholar 

  16. Wang D, Yu Y, He H, et al. Template-free synthesis of hollow-structured Co3O4 nanoparticles as high-performance anodes for lithium-ion batteries. ACS Nano, 2015, 9: 1775–1781

    Article  CAS  Google Scholar 

  17. Zhu S, Li J, Deng X, et al. Ultrathin-nanosheet-induced synthesis of 3D transition metal oxides networks for lithium ion battery anodes. Adv Funct Mater, 2017, 27: 1605017–1605025

    Article  CAS  Google Scholar 

  18. Cheng G, Kou T, Zhang J, et al. O22−/O functionalized oxygen-deficient Co3O4 nanorods as high performance supercapacitor electrodes and electrocatalysts towards water splitting. Nano Energy, 2017, 38: 155–166

    Article  CAS  Google Scholar 

  19. Li Y, Tan B, Wu Y. Mesoporous Co3O4 nanowire arrays for lithium ion batteries with high capacity and rate capability. Nano Lett, 2008, 8: 265–270

    Article  CAS  Google Scholar 

  20. Hou C, Hou Y, Fan Y, et al. Oxygen vacancy derived local build-in electric field in mesoporous hollow Co3O4 microspheres promotes high-performance Li-ion batteries. J Mater Chem A, 2018, 6: 6967–6976

    Article  CAS  Google Scholar 

  21. Gu D, Li W, Wang F, et al. Controllable synthesis of mesoporous peapod-like Co3O4@carbon nanotube arrays for high-performance lithium-ion batteries. Angew Chem Int Ed, 2015, 54: 7060–7064

    Article  CAS  Google Scholar 

  22. Tang C, Zhang Q. Nanocarbon for oxygen reduction electrocatalysis: Dopants, edges, and defects. Adv Mater, 2017, 29: 1604103

    Article  CAS  Google Scholar 

  23. Xu L, Jiang Q, Xiao Z, et al. Plasma-engraved Co3O4 nanosheets with oxygen vacancies and high surface area for the oxygen evolution reaction. Angew Chem Int Ed, 2016, 55: 5277–5281

    Article  CAS  Google Scholar 

  24. Lin Z, Shen S, Wang Z, et al. Laser ablation in air and its application in catalytic water splitting and Li-ion battery. iScience, 2021, 24: 102469

    Article  CAS  Google Scholar 

  25. Lin Z, Xiao BB, Wang Z, et al. Planar-coordination PdSe2 nanosheets as highly active electrocatalyst for hydrogen evolution reaction. Adv Funct Mater, 2021, 31: 2102321

    Article  CAS  Google Scholar 

  26. Zhong W, Wang Z, Gao N, et al. Coupled vacancy pairs in Ni-doped CoSe for improved electrocatalytic hydrogen production through topochemical deintercalation. Angew Chem Int Ed, 2020, 59: 22743–22748

    Article  CAS  Google Scholar 

  27. Lee S, Jin W, Kim SH, et al. Oxygen vacancy diffusion and condensation in lithium-ion battery cathode materials. Angew Chem Int Ed, 2019, 58: 10478–10485

    Article  CAS  Google Scholar 

  28. Wang Y, Xiao X, Li Q, et al. Synthesis and progress of new oxygen-vacant electrode materials for high-energy rechargeable battery applications. Small, 2018, 14: 1802193

    Article  CAS  Google Scholar 

  29. Deng S, Zhang Y, Xie D, et al. Oxygen vacancy modulated Ti2Nb10O29−x embedded onto porous bacterial cellulose carbon for highly efficient lithium ion storage. Nano Energy, 2019, 58: 355–364

    Article  CAS  Google Scholar 

  30. Kim HS, Cook JB, Lin H, et al. Oxygen vacancies enhance pseudocapacitive charge storage properties of MoO3−x. Nat Mater, 2017, 16: 454–460

    Article  CAS  Google Scholar 

  31. Zhang X, Deng S, Zeng Y, et al. Oxygen defect modulated titanium niobium oxide on graphene arrays: An open-door for high-performance 1.4 V symmetric supercapacitor in acidic aqueous electrolyte. Adv Funct Mater, 2018, 28: 1805618

    Article  CAS  Google Scholar 

  32. Qiu J, Li S, Gray E, et al. Hydrogenation synthesis of blue TiO2 for high-performance lithium-ion batteries. J Phys Chem C, 2014, 118: 8824–8830

    Article  CAS  Google Scholar 

  33. Tang ZK, Xue YF, Teobaldi G, et al. The oxygen vacancy in Li-ion battery cathode materials. Nanoscale Horiz, 2020, 5: 1453–1466

    Article  Google Scholar 

  34. Li L, Xie Z, Jiang G, et al. Efficient laser-induced construction of oxygen-vacancy abundant nano-ZnCo2O4/porous reduced graphene oxide hybrids toward exceptional capacitive lithium storage. Small, 2020, 16: 2001526

    Article  CAS  Google Scholar 

  35. Gan Q, He H, Zhao K, et al. Plasma-induced oxygen vacancies in urchin-like anatase titania coated by carbon for excellent sodium-ion battery anodes. ACS Appl Mater Interfaces, 2018, 10: 7031–7042

    Article  CAS  Google Scholar 

  36. Lin T, Yang C, Wang Z, et al. Effective nonmetal incorporation in black titania with enhanced solar energy utilization. Energy Environ Sci, 2014, 7: 967

    Article  CAS  Google Scholar 

  37. Wang G, Yang Y, Ling Y, et al. An electrochemical method to enhance the performance of metal oxides for photoelectrochemical water oxidation. J Mater Chem A, 2016, 4: 2849–2855

    Article  CAS  Google Scholar 

  38. Xu M, Xia Q, Yue J, et al. Rambutan-like hybrid hollow spheres of carbon confined Co3O4 nanoparticles as advanced anode materials for sodium-ion batteries. Adv Funct Mater, 2018, 29: 1807377

    Article  CAS  Google Scholar 

  39. Hao Z, Chen Q, Dai W, et al. Oxygen-deficient blue TiO2 for ultrastable and fast lithium storage. Adv Energy Mater, 2020, 10: 1903107

    Article  CAS  Google Scholar 

  40. Chong SV, Kadowaki K, Xia J, et al. Interesting magnetic behavior from reduced titanium dioxide nanobelts. Appl Phys Lett, 2008, 92: 232502

    Article  CAS  Google Scholar 

  41. Zuo F, Wang L, Wu T, et al. Self-doped Ti3+ enhanced photocatalyst for hydrogen production under visible light. J Am Chem Soc, 2010, 132: 11856–11857

    Article  CAS  Google Scholar 

  42. Yin G, Huang X, Chen T, et al. Hydrogenated blue titania for efficient solar to chemical conversions: Preparation, characterization, and reaction mechanism of CO2 reduction. ACS Catal, 2018, 8: 1009–1017

    Article  CAS  Google Scholar 

  43. Kang J, Kim J, Lee S, et al. Breathable carbon-free electrode: Black TiO2 with hierarchically ordered porous structure for stable Li-O2 battery. Adv Energy Mater, 2017, 7: 1700814

    Article  CAS  Google Scholar 

  44. Yan C, Chen G, Zhou X, et al. Template-based engineering of carbon-doped Co3O4 hollow nanofibers as anode materials for lithium-ion batteries. Adv Funct Mater, 2016, 26: 1428–1436

    Article  CAS  Google Scholar 

  45. Wang Z, Xu W, Chen X, et al. Defect-rich nitrogen doped Co3O4/C porous nanocubes enable high-efficiency bifunctional oxygen electrocatalysis. Adv Funct Mater, 2019, 29: 1902875

    Article  CAS  Google Scholar 

  46. Su D, Dou S, Wang G. Anatase TiO2: Better anode material than amorphous and rutile phases of TiO2 for Na-ion batteries. Chem Mater, 2015, 27: 6022–6029

    Article  CAS  Google Scholar 

  47. Li Z, Dong Y, Feng J, et al. Controllably enriched oxygen vacancies through polymer assistance in titanium pyrophosphate as a super anode for Na/K-ion batteries. ACS Nano, 2019, 13: 9227–9236

    Article  CAS  Google Scholar 

  48. Huang G, Zhang F, Du X, et al. Metal organic frameworks route to in situ insertion of multiwalled carbon nanotubes in Co3O4 polyhedra as anode materials for lithium-ion batteries. ACS Nano, 2015, 9: 1592–1599

    Article  CAS  Google Scholar 

  49. Yu M, Sun Y, Du H, et al. Hollow porous carbon spheres doped with a low content of Co3O4 as anode materials for high performance lithiumion batteries. Electrochim Acta, 2019, 317: 562–569

    Article  CAS  Google Scholar 

  50. Cabana J, Monconduit L, Larcher D, et al. Beyond intercalation-based Li-ion batteries: The state of the art and challenges of electrode materials reacting through conversion reactions. Adv Mater, 2010, 22: E170–E192

    Article  CAS  Google Scholar 

  51. Hu Y, Li Z, Hu Z, et al. Engineering hierarchical CoO nanospheres wrapped by graphene via controllable sulfur doping for superior Li ion storage. Small, 2020, 16: 2003643

    Article  CAS  Google Scholar 

  52. Zhu J, Tu W, Pan H, et al. Self-templating synthesis of hollow Co3O4 nanoparticles embedded in N,S-dual-doped reduced graphene oxide for lithium ion batteries. ACS Nano, 2020, 14: 5780–5787

    Article  CAS  Google Scholar 

  53. Sun H, Xin G, Hu T, et al. High-rate lithiation-induced reactivation of mesoporous hollow spheres for long-lived lithium-ion batteries. Nat Commun, 2014, 5: 4526

    Article  CAS  Google Scholar 

  54. Dou Y, Xu J, Ruan B, et al. Atomic layer-by-layer Co3O4/graphene composite for high performance lithium-ion batteries. Adv Energy Mater, 2016, 6: 1501835

    Article  CAS  Google Scholar 

  55. Shi M, Xiao P, Lang J, et al. Porous g-C3N4 and MXene dual-confined FeOOH quantum dots for superior energy storage in an ionic liquid. Adv Sci, 2019, 7: 1901975

    Article  CAS  Google Scholar 

  56. Augustyn V, Simon P, Dunn B. Pseudocapacitive oxide materials for high-rate electrochemical energy storage. Energy Environ Sci, 2014, 7: 1597

    Article  CAS  Google Scholar 

  57. Augustyn V, Come J, Lowe MA, et al. High-rate electrochemical energy storage through Li+ intercalation pseudocapacitance. Nat Mater, 2013, 12: 518–522

    Article  CAS  Google Scholar 

  58. Zhang X, Wang H, Shui L, et al. Ultrathin Ni(OH)2 layer coupling with graphene for fast electron/ion transport in supercapacitor. Sci China Mater, 2021, 64: 339–348

    Article  CAS  Google Scholar 

  59. Ma Y, Ma Y, Bresser D, et al. Cobalt disulfide nanoparticles embedded in porous carbonaceous micro-polyhedrons interlinked by carbon nanotubes for superior lithium and sodium storage. ACS Nano, 2018, 12: 7220–7231

    Article  CAS  Google Scholar 

  60. Deng X, Wei Z, Cui C, et al. Oxygen-deficient anatase TiO2@C nanospindles with pseudocapacitive contribution for enhancing lithium storage. J Mater Chem A, 2018, 6: 4013–4022

    Article  CAS  Google Scholar 

  61. He H, Huang D, Tang Y, et al. Tuning nitrogen species in three-dimensional porous carbon via phosphorus doping for ultra-fast potassium storage. Nano Energy, 2019, 57: 728–736

    Article  CAS  Google Scholar 

  62. Wang HE, Zhao X, Li X, et al. rGO/SnS2/TiO2 heterostructured composite with dual-confinement for enhanced lithium-ion storage. J Mater Chem A, 2017, 5: 25056–25063

    Article  CAS  Google Scholar 

  63. Xu Y, Zhou M, Wang X, et al. Enhancement of sodium ion battery performance enabled by oxygen vacancies. Angew Chem Int Ed, 2015, 54: 8768–8771

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China (92163117 and 52072389) and the Program of Shanghai Academic Research Leader (20XD1424300).

Author information

Authors and Affiliations

Authors

Contributions

Author contributions Wang J and Ma R initiated the research. Wang X prepared the samples and conducted experimental measurements on the samples. All authors participated in the discussion of the results. Wang X, Ma R and Wang J wrote the paper.

Corresponding authors

Correspondence to Ruguang Ma  (马汝广) or Jiacheng Wang  (王家成).

Ethics declarations

Conflict of interest The authors declare that they have no conflict of interest.

Additional information

Supplementary information Experimental details and supporting data are available in the online version of the paper.

Xunlu Wang is a PhD candidate in Prof. Jiacheng Wang’s group at the State Key Laboratory of High-Performance Ceramics and Superfine Microstructure, Shanghai Institute of the Ceramics, Chinese Academy of Sciences, Shanghai, China. Her current research focuses on the nanostructured electrode materials for Li ion batteries and highly efficient non-precious metal catalysts.

Ruguang Ma received his PhD degree in materials science from the City University of Hong Kong in 2013. He is currently a professor at the College of Materials Science and Engineering, Suzhou University of Science and Technology. His research interests include the design and synthesis of highly efficient non-precious metal catalysts and new nanostructured electrode materials for Li ion batteries, supercapacitors and metal-oxygen batteries.

Jiacheng Wang is a full professor and group leader of the Electrocatalytic Materials and Energy Devices Group at Shanghai Institute of Ceramics, Chinese Academy of Sciences. He was awarded several famous talent projects including Chinese Academy of Sciences Distinguished Talent, Shanghai Academic Research Leader, Alexander von Humboldt Fellow, the Japan Society for the Promotion of Science (JSPS) Postdoctoral Fellow for Foreign Researcher, and Marie Curie Intra-European Fellow. His current research interests include rational design and preparation of high-performance electrocatalysts for advanced energy storage and conversion.

Electronic Supporting Information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, X., Liu, J., Hu, Y. et al. Oxygen vacancy-expedited ion diffusivity in transition-metal oxides for high-performance lithium-ion batteries. Sci. China Mater. 65, 1421–1430 (2022). https://doi.org/10.1007/s40843-021-1909-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40843-021-1909-5

Keywords

Navigation