Skip to main content
Log in

An Ehresmann–Schein–Nambooripad-Type Theorem for a Class of P-Restriction Semigroups

  • Published:
Bulletin of the Malaysian Mathematical Sciences Society Aims and scope Submit manuscript

Abstract

As generalizations of inverse semigroups, restriction semigroups and regular \(*\)-semigroups are investigated by many authors extensively in the literature. In particular, Lawson and Hollings have proved that the category of restriction semigroups together with prehomomorphisms (resp. (2,1,1)-homomorphisms) is isomorphic to the category of inductive categories together with ordered functors (resp. strongly ordered functors), which generalizes the well-known Ehresmann–Schein–Nambooripad theorem (ESN theorem for short) for inverse semigroups. On the other hand, Imaoka and Fujiwara have also obtained an ESN-type theorem for locally inverse regular \(*\)-semigroups. Recently, Jones generalized restriction semigroups and regular \(*\)-semigroups to P-restriction semigroups from a varietal perspective and considered the constructions of P-restriction semigroups by using Munn’s approach. In this paper, we shall study the class of P-restriction semigroups by using “category approach.” We introduce the notion of inductive generalized categories over local semilattices by which a class of P-restriction semigroups called locally restriction P-restriction semigroups is described. Moreover, we show that the category of locally restriction P-restriction semigroups together with (2,1,1)-prehomomorphisms (resp. (2,1,1)-homomorphisms) is isomorphic to the category of inductive generalized categories over local semilattices together with preadmissible mappings (resp. admissible mappings). Our work may be regarded as extending the ESN-type theorems for restriction semigroups and locally inverse regular \(*\)-semigroups, respectively.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Armstrong, S.M.: Structure of concordant semigroups. J. Algebra 118, 205–260 (1988)

    Article  MathSciNet  MATH  Google Scholar 

  2. Brancoa, M.J.J., Gomes, G.M.S., Gould, V.: Ehresmann monoids. J. Algebra 443, 349–382 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  3. Cornock, C., Gould, V.: Proper two-sided restriction semigroups and partial actions. J. Pure Appl. Algebra 216, 935–949 (2012)

    Article  MATH  Google Scholar 

  4. Fountain, J.B., Gomes, G.M.S., Gould, V.: A Munn type representation for a class of \(E\)-semiadequate semigroups. J. Algebra 218, 693–714 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  5. Gould, V.: Notes on restriction semigroups and related structures (2010). https://www.researchgate.net/publication/237604491

  6. Gould, V., Wang, Y.H.: Beyond orthodox semigroups. J. Algebra 368, 209–230 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  7. Gould, V.: Restriction and Ehresmann semigroups. In: Proceedings of the International Conference on Algebra. World Science Publications, Hackensack, 2012, pp. 265–288 (2010)

  8. Gould, V., Szendrei, M.B.: Proper restriction semigroups–semidirect products and W-products. Acta Math. Hung. 141, 36–57 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  9. Gould, V., Hartmann, M., Szendrei, M.B.: Embedding in factorisable restriction monoids. J. Algebra 476, 216–237 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  10. Gomes, G.M.S., Santa-Clara, C., Soares, F.: The semigroup ring of a restriction semigroup with an inverse skeleton. Semigroup Forum 90, 449–474 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  11. Guo, X.J.: Azumaya semigroup algebras. Bull. Malays. Math. Sci. Soc. 39, 993–1004 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  12. Hollings, C.: From right PP monoids to restriction semigroups: a survey. Eur. J. Pure Appl. Math. 2, 21–57 (2009)

    MathSciNet  MATH  Google Scholar 

  13. Hollings, C.: Extending Ehresmann–Schein–Nambooripad theorem. Semigroup Forum 80, 453–476 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  14. Hollings, C.: The Ehresmann–Schein–Nambooripad theorem and its successors. Eur. J. Pure Appl. Math. 5, 414–450 (2012)

    MathSciNet  MATH  Google Scholar 

  15. Hollings, C.: Three approaches to inverse semigroups. Eur. J. Pure Appl. Math. 8, 294–323 (2015)

    MathSciNet  MATH  Google Scholar 

  16. Howie, J.M.: An Introduction to Semigroup Theory. Academic Press, London (1976)

    MATH  Google Scholar 

  17. Imaoka, T., Fujiwara, K.: Characterization of locally inverse \(\ast \)-semigroups. Sci. Math. Jpn. 57, 49–55 (2003)

    MathSciNet  MATH  Google Scholar 

  18. Imaoka, T., Fujiwara, K.: Remarks on locally inverse \(\ast \)-semigroups. Algorithms in algebraic systems and computation theory (Japanese) (Kyoto, 2002). Surikaisekikenkyusho Kokyuroku 1268, 47–49 (2002)

  19. Jackson, M., Stokes, T.: An invitation to C-semigroups. Semigroup Forum 62, 279–310 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  20. Jones, P.R.: A common framework for restriction semigroups and regular \(\ast \)-semigroups. J. Pure Appl. Algebra 216, 618–632 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  21. Jones, P.R.: On lattices of varieties of restriction semigroups. Semigroup Forum 86, 337–361 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  22. Jones, P.R.: Varieties of \(P\)-restriction semigroups. Communications in Algebra 42, 1811–1834 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  23. Jones, P.R.: Almost perfect restriction semigroups. J. Algebra 445, 193–220 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  24. Ji, Y.D., Luo, Y.F.: Cellularity of some semigroup algebras. Bull. Malays. Math. Sci. Soc. 40, 215–235 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  25. Kudryavtseva, G.: Partial monoid actions and a class of restriction semigroups. J. Algebra 429, 342–370 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  26. Lawson, M.V.: Semigroups and ordered categories I. The reduced case. J. Algebra 141, 422–462 (1991)

    Article  MathSciNet  MATH  Google Scholar 

  27. Lawson, M.V.: Inverse Semigroups: The Theory of Partial Symmetries. World Scientific, Singapore (1998)

    Book  MATH  Google Scholar 

  28. Meakin, J.: The structure mappings of a regular semigroup. Proc. Edinb. Math. Soc. 21, 135–142 (1978)

    Article  MathSciNet  MATH  Google Scholar 

  29. Nambooripad, K.S.S.: Structure of regular semigroups, Mem. Am. Math. Soc. 22(224), 1–73 (1979)

  30. Nordahl, T., Scheiblich, H.E.: Regular \(\ast \)-semigroups. Semigroup Forum 16, 369–377 (1978)

    Article  MathSciNet  MATH  Google Scholar 

  31. Ren, X.M., Yang, D.D., Shum, K.P.: On locally Ehresmann semigroups. J. Algebra Appl. 10(6), 1165–1186 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  32. Szendrei, M.B.: Embedding of a restriction semigroup into a W-product. Semigroup Forum 89, 280–291 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  33. Wang, S.F.: Fundamental regular semigroups with quasi-ideal regular \(\ast \)-transversals. Bull. Malays. Math. Sci. Soc. 38, 1067–1083 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  34. Wang, Y.H.: Beyond regular semigroups. Semigroup Forum 92, 414–448 (2016)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

The author expresses his profound gratitude to the referees for the valuable comments and suggestions, which not only enrich and improve greatly the content and presentation of this article, but also give the author some thoughts for future directions of work. In particular, the author revises Lemma 2.4 (2), adds Lemmas 2.7 and 2.11 and shortens the original proof of Lemma 2.12 according to the referees’ suggestions. As one of the referees has pointed out, Imaoka and Fujiwara gave an ESN-type theorem for locally inverse regular \(*\)-semigroups in the texts [17, 18]. According to the referee’s advices, we add a new section to state the results of Imaoka and Fujiwara and make some connections with our results. Thanks also go to the editor for the timely communications.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shoufeng Wang.

Additional information

Communicated by Kar Ping Shum.

This paper is supported by Nature Science Foundations of China (11661082 and 11301470).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, S. An Ehresmann–Schein–Nambooripad-Type Theorem for a Class of P-Restriction Semigroups. Bull. Malays. Math. Sci. Soc. 42, 535–568 (2019). https://doi.org/10.1007/s40840-017-0497-5

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40840-017-0497-5

Keywords

Mathematics Subject Classification

Navigation