Skip to main content

Advertisement

Log in

Circular Economy Applied to Metallurgical Waste: Use of Slags and Fly Ash from the Ferronickel Industry in the Production of Eco-Friendly Composites

  • Research Article
  • Published:
Journal of Sustainable Metallurgy Aims and scope Submit manuscript

Abstract

The aim of this paper is studying the use of industrial, solid waste materials from the ferronickel industry (fly ash—FA, electric furnace slag—EFS and converter slag—CS) as a reinforcing component in new value-added polymer-based composite: eco-friendly, functional geo-membranes. The studied geo-membranes were produced by film-casting method using polyvinyl chloride (PVC) matrix reinforced by the previously mentioned metallurgical waste materials, as-obtained and modified in acid (HCl) and alkaline (NaOH) medium. The study of the produced systems was done through observation and analysis of the effect on their: (i) morphology and internal structure (SEM and FTIR analysis), (ii) thermal stability (TG/DTA/DTG analysis) and (iii) moisture stability (the swelling kinetics was followed and the ultimate rate of swelling after 24 h was determined). The morphology of the waste materials is of spherical and polygonal non-regular shape. The morphology and microstructural properties of the obtained FA/PVC composites confirmed region of well dispersed particles where the particles were tightly embedded and mechanically interlocked in the PVC matrix indicating strong interfacial interaction with the polymer matrix. All waste materials were thermally stable with minimal 0.8% weight loss, EFS has been shown as the most stable with weight loss of 0.1% near 350 °C. Generally, all the studied composites have shown a higher swelling degree in comparison with PVC, where the composites reinforced with FA have shown the best performances in adsorption test.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Liu K, Zhang Z, Sun J (2021) Advances in understanding the alkali-activated metallurgical slag. Adv Civ Eng 2021:8795588. https://doi.org/10.1155/2021/8795588

    Article  Google Scholar 

  2. Ionescu BA, Lazarescu AV, Hegyi A (2020) The possibility of using slag for the production of geopolymer materials and its influence on mechanical performances—a review. MDPI Proc 63:30. https://doi.org/10.3390/proceedings2020063030

    Article  Google Scholar 

  3. Cong P, Cheng Y (2021) Advances in geopolymer materials: a comprehensive review. J Traffic Transp Eng (Engl Ed) 8(3):283–314. https://doi.org/10.1016/j.jtte.2021.03.004

    Article  Google Scholar 

  4. Kalombe RM, Ojumu VT, Eze CP et al (2020) Fly ash-based geopolymer building materials for green and sustainable development. MDP Mater 13:5699. https://doi.org/10.3390/ma13245699

    Article  CAS  Google Scholar 

  5. Khan MA, Memon SA, Farooq F et al (2021) (2021) Compressive strength of fly-ash-based geopolymerconcrete by gene expression programming and random forest. Adv Civ Eng 1:6618407. https://doi.org/10.1155/2021/6618407

    Article  Google Scholar 

  6. Shukla A, Chaurasia AK, Mumtaz Y et al (2020) Effect of sodium oxide on physical and mechanical properties of fly ash based geopolymer composites. Indian J Sci Technol 13(38):3994–4002. https://doi.org/10.17485/IJST/v13i38.1663

    Article  CAS  Google Scholar 

  7. Marcin M, Sisol M, Brezani I (2016) Effect of slag addition on mechanical properties of fly ash based geopolymers. Procedia Eng 151:191–197. https://doi.org/10.1016/j.proeng.2016.07.380

    Article  CAS  Google Scholar 

  8. Mucsi G, Rácz Á, Molnár Z et al (2014) Synergetic use of lignite fly ash and metallurgical converter slag in geopolymer concrete. Min Sci 21:43–55. https://doi.org/10.5277/ms142104

    Article  Google Scholar 

  9. Lee NK, An GH, Koh KT et al (2016) (2016) Improved reactivity of fly ash-slag geopolymer by the addition of silica fume. Adv Mater Sci Eng 1:2192053. https://doi.org/10.1155/2016/2192053

    Article  CAS  Google Scholar 

  10. Hui-Teng N, Cheng-Yong H, Yun-Ming L et al (2021) Formulation, mechanical properties and phase analysis of fly ash geopolymer with ladle furnace slag replacement. J Mater Res Technol 2:1212–1226. https://doi.org/10.1016/j.jmrt.2021.03.065

    Article  CAS  Google Scholar 

  11. Lancellotti I, Piccolo F, Traven K et al (2021) Alkali activation of metallurgical slags: reactivity, chemical behavior, and environmental assessment. MDP Mater 14(3):639. https://doi.org/10.3390/ma14030639

    Article  CAS  Google Scholar 

  12. Karamanov A, Paunović P, Ranguelov B et al (2017) Vitrification of hazardous Fe-Ni wastes into glass-ceramic with fine crystalline structure and elevated exploitation characteristics. J Environ Chem Eng 5(1):432–441

    Article  CAS  Google Scholar 

  13. Ljatifi E, Kamusheva A, Grozdanov A et al (2015) Optimal thermal cycle for production of glass-ceramic based on wastes from ferronickel manufacture. Ceram Int 41(9):11379–11386. https://doi.org/10.1016/j.ceramint.2015.05.098

    Article  CAS  Google Scholar 

  14. Miltiadis SK, Giannopoulou I, Tahir MFM et al (2020) Upgrading copper slags to added value fire resistant geopolymers. Waste Biomass Valoriz 11(7):3811–3820. https://doi.org/10.1007/s12649-019-00666-1

    Article  CAS  Google Scholar 

  15. Nugroho AW, Prasetyo MKP, Budiyantoro C (2020) Effect of fly ash on the mechanical properties of polyvinyl chloride-fly ash composite. In: Sabino U, Imaduddin F, Prabowo A (eds) Proceedings of the 6th international conference and exhibition on sustainable energy and advanced materials. Lecture notes in mechanical engineering, 6–17 October 2019; Surakarta, Indonesia. Springer, Singapore, pp 667–674. https://doi.org/10.1007/978-981-15-4481-1_63

  16. Joshi PS, Marathe DS (2019) Experimental investigation of mechanical properties of impact modified polyvinyl chloride-fly ash composites. J Miner Mater Charact Eng 7(1):34–47. https://doi.org/10.4236/jmmce.2019.71003

    Article  CAS  Google Scholar 

  17. Khoshnoud P, Jamel MM, Gunashekar S et al (2015) Evaluating the performance of class-F fly ash reinforced PVC foam composites. Int J Innov Res Sci Eng Technol 4(9):9419–9427. https://doi.org/10.15680/IJIRSET.2015.0409155

    Article  Google Scholar 

  18. Khoshnoud P, Gunashekar S, Jamel MM et al (2014) Comparative analysis of rigid PVC foam reinforced with class C and class F fly ash. J Miner Mater Charact Eng 2(6):554–565. https://doi.org/10.4236/jmmce.2014.26057

    Article  Google Scholar 

  19. Khoshnoud P, Abu-Zahra N (2018) The effect of particle size of fly ash (FA) on the interfacial interaction and performance of PVC/FA composites. J Vinyl Add Technol 25(1):134–143. https://doi.org/10.1002/vnl.21633

    Article  CAS  Google Scholar 

  20. Khoshnoud P, Abu-Zahra N (2018) Kinetics of thermal decomposition of PVC/fly ash composites. Int J Polym Anal Charact 23(2):170–180. https://doi.org/10.1080/1023666X.2017.1404668

    Article  CAS  Google Scholar 

  21. Aliti R, Načevski G, Ruseska G et al (2016) Fly ash-polymer composites based on polyvinylchloride and industrial fly ash waste particles. Mater Environ Prot 5(1):14–23

    Google Scholar 

  22. Ho YS, McKay G (1998) A comparison of chemisorption kinetic models applied to pollutant removal on various sorbents. Trans Inst Chem Eng B76(4):332–340. https://doi.org/10.1205/095758298529696

    Article  Google Scholar 

  23. Kajjumba GW, Emik S, Öngen A et al (2019) Modelling of adsorption kinetic processes—errors, theory and application, advanced sorption process applications. In: Edebali S (ed) Advanced sorption process applications. InTech Open, London. https://doi.org/10.5772/intechopen.80495

  24. Portillo-Blanco H, Zuluaga MC, Ortega LA et al (2020) Mineralogical characterization of slags from the Oiola site (Biscay, Spain) to assess the development in Bloomery iron smelting technology from the Roman period to the middle ages. Minerals 10(4):321. https://doi.org/10.3390/min10040321

    Article  CAS  Google Scholar 

  25. Pandey M, Joshi GM, Mukherjee A et al (2016) Electrical properties and thermal degradation of poly(vinyl chloride)/polyvinylidene fluoride/ZnO polymer nanocomposites. Polym Int 65(9):1098–1106. https://doi.org/10.1002/pi.5161

    Article  CAS  Google Scholar 

  26. Ul-Hamid A, Soufi KY, Al-Hadhrami LM et al (2015) Failure investigation of an underground low voltage XLPE insulated cable. Anti-Corros Methods Mater 62(5):281–287. https://doi.org/10.1108/ACMM-02-2014-1352

    Article  CAS  Google Scholar 

  27. Gohatre OK, Biswal M, Mohanty S et al (2020) Study on thermal, mechanical and morphological properties of recycled poly(vinyl chloride)/fly ash composites. Polym Int 69(6):552–563. https://doi.org/10.1002/pi.5988

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This research was supported and performed within the bilateral project with PR China, “Transformation of industrial waste powders into new functional materials” founded by Ministry of Education and Science of R. N. Macedonia (No20-6334/1; 29.06.2020).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Perica Paunović.

Additional information

The contributing editor for this article was João António Labrincha Batista.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Paunović, P., Grozdanov, A. Circular Economy Applied to Metallurgical Waste: Use of Slags and Fly Ash from the Ferronickel Industry in the Production of Eco-Friendly Composites. J. Sustain. Metall. 8, 815–824 (2022). https://doi.org/10.1007/s40831-022-00534-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40831-022-00534-8

Keywords

Navigation