Skip to main content
Log in

Electro-Deposition Behavior in Methanesulfonic-Acid-Based Lead Electro-Refining

  • Research Article
  • Published:
Journal of Sustainable Metallurgy Aims and scope Submit manuscript

Abstract

The lead (Pb) electro-refining in the green methanesulfonic acid (MSA) system presents an alternative route to the conventional fluosilicic-acid-based Pb electro-refining. Herein, we investigated the electro-deposition behavior of the MSA-based Pb electro-refining by electrochemical measurement and apparent characterization techniques. The operational principle of the Pb deposition was preliminarily understood by performing cyclic voltammetry (CV) complemented with SEM–EDS detection. The results indicated the thermodynamic priority of the efficient Pb2+/Pb reduction reaction over the H+/H2 one. The impact of various factors such as MSA concentration, scanning rate, and temperature on the effectiveness of Pb electro-deposition were investigated by linear sweep voltammetry and electrochemical impedance spectroscopy. Further numeric calculation and model analysis helped acquire in-depth kinetics and mechanism knowledge, such as the discharge form of divalent Pb(II), reversibility of the electrode process, apparent activation energy, reaction order and deposition reaction kinetics. Overall, this work revealed important electrochemical mechanism, principle, and kinetics of the Pb deposition in the MSA-based electro-refining process and would offer a significant guidance in condition optimization of its practice.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Chang C, Li YG, Chen YM et al (2020) Lead electrodeposition in methanesulfonic acid system. Min Metall Eng 40(01):105–108+113. https://doi.org/10.3969/j.issn.0253-6099.2020.01.025

  2. Baker C, Kelly PD, Murrell CJ (1991) Microbial degradation of methanesulphonic acid: a missing link in the biogeochemical sulphur cycle. Nature 350:627–628. https://doi.org/10.1038/350627a0

    Article  CAS  Google Scholar 

  3. Gernon MD, Wu M, Buszta T et al (1999) Environmental benefits of methane sulfonic acid. Comparative properties and advantages. Green Chem 1(3):127–140. https://doi.org/10.1039/A900157C

    Article  CAS  Google Scholar 

  4. Yang SH, Wu YZ, Sun YW et al (2018) Electrochemistry of anodic reactions in MSA system during electrowinning of lead. Hydrometall China 37:356–361, 367. https://doi.org/10.13355/j.cnki.sfyj.2018.05.004

  5. Lin XH, Fei JY, Tuo LL et al (2014) Effect of methanesulfonate fast nickel plating process parameters on the internal stress of the plated layer. Mater Prod 47(8):10–14. https://doi.org/10.16577/j.cnki.42-1215/tb.2014.08.001

    Article  CAS  Google Scholar 

  6. Hasan M, Rohan JF (2010) Cu electrodeposition from methanesulfonate electrolytes for ULSI and MEMS applications. J Electrochem Soc 157(5):D278–D282. https://doi.org/10.1149/1.3332729

    Article  CAS  Google Scholar 

  7. Li YG, He J, Liao FW et al (2019) Mechanism of third phase elimination and demulsification during indium extraction from methanesulfonic acid solution. Min Metall Eng 39(5):65–68

    CAS  Google Scholar 

  8. Walsh FC, Deleon CP (2014) Versatile electrochemical coatings and surface layers from aqueous methane sulfonic acid. Surf Coat Technol 259:676–697. https://doi.org/10.1016/j.surfcoat.2014.10.010

    Article  CAS  Google Scholar 

  9. Zhang Z, Wu GH, Yi ZB et al (2013) Present research situation on methylsulfonate tin and tin alloy plating. Hunan Nonferrous Met 29(2):36–39. https://doi.org/10.3969/j.issn.1003-5540.2013.02.012

    Article  CAS  Google Scholar 

  10. Pewnim N, Roy S (2013) Electrodeposition of tin-rich Cu–Sn alloys from a methane sulfonic acid electrolyte. Electrochim Acta 90:498–506. https://doi.org/10.1016/j.electacta.2012.12.053

    Article  CAS  Google Scholar 

  11. Bengoa LN, Pary P, Conconi MS et al (2017) Electrodeposition of Cu–Sn alloys from a methane sulfonic acid electrolyte containing benzyl alcohol. Electrochim Acta 256:211–219. https://doi.org/10.1016/j.electacta.2017.10.027

    Article  CAS  Google Scholar 

  12. Jin B, Dreisinger DB (2016) A green electrorefining process for production of pure lead from methanesulfonic acid medium. Sep Purif Technol 170:199–207. https://doi.org/10.1016/j.seppur.2016.06.050

    Article  CAS  Google Scholar 

  13. Brad AJ, Faulkner LR (2000) Electrochemical methods: fundamentals and applications. https://www.researchgate.net/publication/257978943_Electrochemical_Methods_Fundamentals_and_Applications

  14. Berzins T, Delahay P (1953) Oscillographic polarographic waves for the reversible deposition of metals on solid electrodes. J Am Chem Soc 75(3):555–559. https://doi.org/10.1021/ja01099a013

    Article  CAS  Google Scholar 

  15. Wang CH, Yang SH, Chen YM et al (2015) Effect of bromide ions on the corrosion behavior of hafnium in anhydrous ethanol. RSC Adv 5:34580–34587. https://doi.org/10.1039/C5RA02233A

    Article  CAS  Google Scholar 

  16. Wang CH, Yang SH, Chen YM (2019) Electrochemical behaviour of hydrogen evolution reaction on platinum in anhydrous ethanol containing tetraethylammonium bromide. J Appl Electrochem 49(6):539–550. https://doi.org/10.1007/s10800-019-01301-6

    Article  CAS  Google Scholar 

  17. Wang CH, Yang SH, Chen YM et al (2017) Electrochemical behaviour of hafnium in anhydrous n-butanol containing tetraethylammonium bromide. Int J Electrochem Sci 12(1):545–560. https://doi.org/10.1007/s10800-019-01301-6

    Article  CAS  Google Scholar 

  18. Wang CH, Yang SH, Yuan Y et al (2017) Corrosion behavior of hafnium in anhydrous isopropanol and acetonitrile solutions containing bromide ions. Trans Nonferrous Met Soc China. https://doi.org/10.1016/S1003-6326(17)60214-0

    Article  Google Scholar 

  19. Zhang JQ (2009) Electroplating process and mechanism of tin-silver-copper alloy and solder properties of Deposits. Dissertation for the Doctoral Degree in Engineering. Harbin Institute of Technology, Harbin. https://doi.org/10.7666/d.D257917

  20. Chen MJ, Shiu YJ, Lin CH (2009) Recovery of lead from spent lead batteries by hydrometallurgical method. Chin J Process Eng S2:71–75

    Google Scholar 

  21. Wang CH, Jiang KQ, Jones TW et al (2022) Electrowinning-coupled CO2 capture with energy-efficient absorbent regeneration: towards practical application. Chem Eng J 427(7774):131981. https://doi.org/10.1016/j.cej.2021.131981

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This research was supported by BASF New Material Lead Methanesulfonic Acid System Lead Electrolytic Refining Project (No. 738010278) and the Natural Science Foundation of Hunan Province of China for Youths (No. 2020JJ5628).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Chang-hong Wang or Yong-ming Chen.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Additional information

The contributing editor for this article was Adam Clayton Powell.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (PDF 356 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, Yg., Liu, Ss., Wang, Ch. et al. Electro-Deposition Behavior in Methanesulfonic-Acid-Based Lead Electro-Refining. J. Sustain. Metall. 7, 1910–1916 (2021). https://doi.org/10.1007/s40831-021-00467-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40831-021-00467-8

Keywords

Navigation